File: interp.man

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (44 lines) | stat: -rw-r--r-- 892 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
.TH INTERP G "April 1993" "Scilab Group" "Scilab Function"
.so ../sci.an
.SH NAME
interp - interpolation
.SH CALLING SEQUENCE
.nf
[f0 [,f1 [,f2 [,f3]]]]=interp(xd,x,f,d)
.fi
.SH PARAMETERS
.TP 10
xd
: real vector
.TP 10
x,f,d
: real vectors from spline
.TP 10
fi
: vectors (derivatives)
.SH DESCRIPTION
given three vectors \fV(x,f,d)\fR defining a spline function
(see \fVsplin\fR) with \fVfi=S(xi), di = S'(xi)\fR this function
evaluates \fVS\fR (resp. \fVS', S'', S'''\fR) at \fVxd(i)\fR.
.TP 10
x 
: vector of \fVxi  (x(1) < x(2) < ...)\fR
.TP
f 
: vector of \fVS(xi)\fR
.TP 
d 
: vector of \fVS'(xi)\fR
.TP
f0 
: vector \fV[S(xd(1),S(xd(2)),S(xd(3)),...]\fR
.TP
f(1 2 3) 
: vector of first, second, third derivative of \fVS\fR at \fVxd=[xd(1),xd(2),...]\fR i.e.
.LP 
\fVf1 = [S'(xd(1)),S'(xd(2)),...]\fR
.LP
\fVf2 = [S''(xd(1)),S''(xd(2)),...]\fR
.LP
.SH SEE ALSO
splin, smooth, interpln