1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
|
.TH "GeneWei" 2 " June 6th 1997" "Fractales Group" "Scilab Function"
.so ../sci.an
.SH NAME
GeneWei - Generalized Weierstrass function
.sp
Author: Paulo Goncalves
.sp
Generates a Generalized Weierstrass function
.sp
.sp
.SH Usage
.sp
.ft CR
.nf
[x,Ht]=GeneWei(N,ht,lambda,tmax,randflag)
.fi
.ec
.ft P
.sp
.SH Input parameters
.RS
.TP
o
\fB N \fP : Positive integer
Sample size of the synthesized signal
.TP
o
\fB ht \fP : Real vector or character string
\fI ht \fP: real vector of size \f(CR[\fP1,N\f(CR]\fP: each element
prescribes the local Holder regularity of the function. All elements
of \fI ht \fP must be in the interval \f(CR[\fP0,1\f(CR]\fP.
\fI ht \fP: character string : contains the analytic expression of the
Holder trajectory (e.g. '0.5*sin(16*t) + 0.5')
.TP
o
\fB lambda \fP : positive real
Geometric progression of the Weierstrass function. Default value is \fIlambda\fP = 2.
.TP
o
\fBtmax \fP : positive real
Time support of the Weierstrass function. Default value is \fItmax\fP = 1.
.TP
o
\fB randflag \fP : flag 0/1
\fI flag \fP = 0 : deterministic Weierstrass function
\fI flag \fP = 1 : random Weierstrass process
Default value is \fIrandflag\fP = 0
.RE
.SH Output parameters
.RS
.TP
o
\fB x \fP : real vector \f(CR[\fP1,N\f(CR]\fP
Time samples of the Weierstrass function
.TP
o
\fB Fj \fP : real vector \f(CR[\fP1,N\f(CR]\fP
Holder trajectory of the Weierstrass function
.RE
.SH See also:
.SH Example:
\f(CR[\fPx,Ht\f(CR]\fP = GeneWei(1024,'abs(sin(16*t))',2,1,0) ;
|