File: McCulloch.cat

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (34 lines) | stat: -rw-r--r-- 1,442 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

McCulloch(2)                   Scilab Function                   McCulloch(2)
NAME
  McCulloch - Stable law parameters estimation (McCulloch method)

  Author: Lotfi Belkacem

  This routine estimates parameters of a  stable law using the Mc-Culloch
  (1985) method.

Usage
  [param,sd_param]=McCulloch(data)

Input parameters
       o data : real vector [size,1] corresponding to the data sample.
Output parameters
       o param : real vector [4,1] corresponding to the four estimated param-
         eters  of the fited stable law.  the order is respectively alpha
         (characteristic exponent), beta (skewness parameter), mu (location
         parameter), gamma (scale parameter)
       o sd_param : real vector [4,1] corresponding to estimated standard
         deviation of the four previous parameters.
Example
  [proc1.5,inc1.5]=sim_stable(1.5,0,0,1,10000); generates a standard 1.5-
  stable motion.  [param,sd_param]=McCulloch(inc1.5); estimates parameters of
  the previous simutated 1.5-stable random variable inc1.5 To visualize the
  estimates parameters or their sd-deviations use respectively  param or
  sd_param.  alpha=param(1), beta=param(2), mu=param(3), gamma=param(4).
  sd_alpha=sd_param(1), sd_alphabeta=sd_param(2), sd_alphamu=sd_param(3),
  sd_gamma=sd_param(4).

Remarque
  Skewness parameter and its sd-deviation estimations are not very accurate.
  Specially when the characteristic exponent is arround 2.