File: cwtspec.man

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (100 lines) | stat: -rw-r--r-- 2,166 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
.TH "cwtspec" 2 " June 6th 1997" "Fractales Group" "Scilab Function"
.so ../sci.an
.SH NAME
cwtspec -  Continuous L1 wavelet based Legendre spectrum
.sp
Author: Paulo Goncalves
.sp
Estimates the multifractal Legendre spectrum of a 1-D signal from the
wavelet coefficients of a \fBL1\fP continuous decomposition
.sp
.sp
.SH Usage
.sp
.ft CR
.nf
[alpha,f_alpha,logpart] = cwtspec(wt,scale,Q[,FindMax,ChooseReg])
.fi 
.ec
.ft P
.sp
.SH Input parameters


.RS

.TP
o 
\fBwt\fP : Real or complex matrix \f(CR[\fPN_scale,N\f(CR]\fP 
Wavelet coefficients of a continuous wavelet transform (output of \fIcwt\fP)

.TP
o 
\fBscale\fP : real vector  \f(CR[\fP1,N_scale\f(CR]\fP
Analyzed scale vector

.TP
o 
\fBQ\fP :  real vector \f(CR[\fP1,N_Q\f(CR]\fP
Exponents of the partition function

.TP
o 
\fBFindMax\fP : 0/1 flag. 
\fIFindMax\fP = 0 : estimates the Legendre spectrum from all coefficients 
\fIFindMax\fP = 1 : estimates the Legendre spectrum from the local Maxima
coefficients of the wavelet transform 
Default value is FindMax = 1

.TP
o 
\fBChooseReg\fP : 0/1 flag or integer vector \f(CR[\fP1,N_reg\f(CR]\fP, 
(\fIN_reg\fP <= \fIN_scale\fP)
\fIChooseReg\fP = 0 : full scale range regression 
\fIChooseReg\fP = 1 : asks online the scale indices setting the range for the linear
regression of the partition function. 
\fIChooseReg\fP = \f(CR[\fPn1 ... nN_reg\f(CR]\fP : scale indices for the linear
regression of the partition function.
.RE

.SH Output parameters


.RS

.TP
o 
\fBalpha\fP : Real vector \f(CR[\fP1,N_alpha\f(CR]\fP, \fIN_alpha\fP <= \fIN_Q\fP
Singularity support of the multifractal Legendre spectrum

.TP
o 
\fBf_alpha\fP : real vector \f(CR[\fP1,N_alpha\f(CR]\fP
Multifractal Legendre spectrum

.TP
o 
\fBlogpart\fP : real matrix \f(CR[\fPN_scale,N_Q\f(CR]\fP
Log-partition function

.TP
o 
\fBtau\fP : real vector \f(CR[\fP1,N_Q\f(CR]\fP
Regression function
.RE

.SH See also:
cwt, contwtspec, contwt, dwtspec
.SH Example:
.sp
.ft CR
.nf
N = 2048 ; H = 0.7 ; Q = linspace(-4,4,11) ;
[x] = fbmlevinson(N,H) ;
[wt,scale] = cwt(x,2^(-8),2^(-1),16,8) ;
[alpha,f_alpha,logpart,tau] = cwtspec(wt,scale,Q,1,1) ;
plot(alpha,f_alpha),
.fi 
.ec
.ft P
.sp