File: dwtspec.cat

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (38 lines) | stat: -rw-r--r-- 1,535 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

dwtspec(2)                     Scilab Function                     dwtspec(2)
NAME
  dwtspec -  Discrete wavelet based Legendre spectrum

  Author: Paulo Goncalves

  Estimates the multifractal Legendre spectrum of a 1-D signal from the
  wavelet coefficients of a discrete decomposition

Usage

  [alpha,f_alpha,logpart] = dwtspec(wt,Q[,ChooseReg])
Input parameters
       o wt : Real vector [1,N] Wavelet coefficients of a discrete wavelet
         transform (output of FWT)
       o Q :  real vector [1,N_Q] Exponents of the partition function
       o ChooseReg : 0/1 flag or integer vector [1,N_reg], (N_reg <= N_scale)
         ChooseReg = 0 : full scale range regression ChooseReg = 1 : asks
         online the scale indices setting the range for the linear regression
         of the partition function. ChooseReg = [n1 ... nN_reg] : scale
         indices for the linear regression of the partition function.
Output parameters
       o alpha : Real vector [1,N_alpha], N_alpha <= N_Q Singularity support
         of the multifractal Legendre spectrum
       o f_alpha : real vector [1,N_alpha] Multifractal Legendre spectrum
       o logpart : real matrix [N_scale,N_Q] Log-partition function
       o tau : real vector [1,N_Q] Regression function
See also:
  cwtspec, FWT, WTStruct, MakeQMF, flt, iflt
Example:

  N = 2048 ; H = 0.3 ; Q = linspace(-4,4,11) ;
  [x] = fbmlevinson(N,H) ;
  qmf = MakeQMF('daubechies',2) ;
  [wt] = FWT(x,log2(N),qmf) ;
  [alpha,f_alpha,logpart,tau] = dwtspec(wt,Q,1) ;
  plot(alpha,f_alpha),