1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
|
.TH "findWTLM" 2 " June 6th 1997" "Fractales Group" "Scilab Function"
.so ../sci.an
.SH NAME
findWTLM - Finds local maxima lines of a CWT
.sp
Author: Paulo Goncalves
.sp
Finds the local maxima of a continuous wavelet transform
.sp
.sp
.SH Usage
.sp
.ft CR
.nf
[maxmap] = findWTLM(wt,scale[,depth])
.fi
.ec
.ft P
.sp
.SH Input parameters
.RS
.TP
o
\fBwt\fP : Complex matrix \f(CR[\fPN_scale,N\f(CR]\fP
Wavelet coefficients of a continuous wavelet transform (output of \fIFWT\fP or \fIcontwt\fP)
.TP
o
\fBscale\fP : real vector \f(CR[\fP1,N_scale\f(CR]\fP
Analyzed scale vector
.TP
o
\fBdepth\fP : real in \f(CR[\fP0,1\f(CR]\fP
maximum relative depth for the peaks search.
Default value is 1 (all peaks found)
.RE
.SH Output parameters
.RS
.TP
o
\fBmaxmap\fP : 0/1 matrix \f(CR[\fPN_scale,N\f(CR]\fP
If \fImaxmap\fP(m,n) = 0 : the coefficient \fIwt\fP(m,n) is not a local maximum
If \fImaxmap\fP(m,n) = 1 : the coefficient \fIwt\fP(m,n) is a local maximum
.RE
.SH See also:
contwt, cwt
.SH Example:
.sp
.ft CR
.nf
N = 2048 ; H = 0.3 ; Q = linspace(-4,4,11) ;
[x] = fbmlevinson(N,H) ;
[wt,scale] = cwt(x,2^(-6),2^(-1),36,0) ;
[maxmap] = findWTLM(wt,scale) ;
.fi
.ec
.ft P
.sp
\fI Vizualisation in Matlab: \fP
.sp
.ft CR
.nf
viewWTLM(maxmap,scale,wt) ,
axis([1024 - 64 1024 + 64 0 log2(max(scale))]) ,
.fi
.ec
.ft P
.sp
\fI Vizualisation in Scilab: \fP\fB Not implemeted yet!... \fP
|