File: idmt.man

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (91 lines) | stat: -rw-r--r-- 1,887 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
.TH "idmt" 2 " June 6th 1997" "Fractales Group" "Scilab Function"
.so ../sci.an
.SH NAME
idmt -  Inverse Discrete Mellin transform
.sp
Author: Paulo Goncalves
.sp
Computes the Inverse Fast Fourier-Mellin transform of a signal.
.sp
.sp
.SH Usage
\f(CR[\fPx,t\f(CR]\fP = idmt(mellin,beta,\f(CR[\fPM\f(CR]\fP) 
.SH Input parameters


.RS

.TP
o 
\fBmellin\fP :  complex vector \f(CR[\fP1,N\f(CR]\fP
Fourier-Mellin transform to be inverted. For a correct inversion of the Fourier-Mellin
transform, the direct Fourier-Mellin transform \fImellin\fP must have been computed from \fIfmin\fP
to \fB0.5 cycles per sec\fP.

.TP
o 
\fBbeta\fP : real vector \f(CR[\fP1,N\f(CR]\fP
Variable of the Mellin transform \fImellin\fP.

.TP
o 
\fBM\fP : positive integer. 
Number of time samples to be recovered from \fImellin\fP.
.RE

.SH Output parameters


.RS

.TP
o 
\fBx\fP : complex vector \f(CR[\fP1,M\f(CR]\fP
Inverse Fourier-Mellin transform of \fImellin\fP.

.TP
o 
\fBt\fP : time variable of the Inverse Fourier-Mellin transform \fIx\fP.
.RE

.SH Description
The Inverse Fourier-Mellin transform can be viewed as an Inverse Fast
Fourier Transform which result is assumed geometrically sampled. To
recover the initial time signal, a Discrete Inverse Fourier Transform
is applied to this geometrically Fourier representation.
\fBImportant\fP The Inverse Fourier-Mellin transform is correct only if
the direct Fourier-Mellin transform has been computed from \fIfmin\fP
to \fB0.5 cycles per sec.\fP
.SH See also:
dmt, dilate
.SH Example:
\fI Signal synthesis \fP 
.sp
.ft CR
.nf
x = morlet(0.1,32) ; 
plot(x)
.fi 
.ec
.ft P
.sp
\fI Computation of the Mellin transform\fP 
.sp
.ft CR
.nf
[mellin,beta] = dmt(x,0.01,0.5,128) ;
plot(beta,abs(mellin))
.fi 
.ec
.ft P
.sp
\fI Computation of the Inverse Mellin transform\fP 
.sp
.ft CR
.nf
[y,t] = idmt(mellin,beta,65) ;
plot(t,abs(x-y))
.fi 
.ec
.ft P
.sp