File: linearlt.man

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (82 lines) | stat: -rw-r--r-- 1,621 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
.TH " linearlt" 2 " March 10, 1998" "Fractales Group" "Scilab Function"
.so ../sci.an
.SH NAME
 linearlt -  linear time legendre transform
.sp
Author: Christophe Canus
.sp
This C_LAB routine the Legendre transform of a function using the linear time Legendre transform algorithm.
.sp
.sp
.SH Usage
\f(CR[\fPs,u_star_s\f(CR]\fP=linearlt(x,u_x)
.SH Input parameters


.RS

.TP
o 
\fBx\fP : real vector \f(CR[\fP1,N\f(CR]\fP or
\f(CR[\fPN,1\f(CR]\fP 
Contains the abscissa.

.TP
o 
\fBy\fP : real vector \f(CR[\fP1,N\f(CR]\fP or
\f(CR[\fPN,1\f(CR]\fP 
Contains the function to be transformed.
.RE

.SH Output parameters


.RS

.TP
o 
\fBs\fP : real vector \f(CR[\fP1,M\f(CR]\fP 
Contains the abscissa of the regularized function.

.TP
o 
\fBu_star_s\fP : real vector \f(CR[\fP1,M\f(CR]\fP 
Contains the Legendre conjugate function.
.RE

.SH Description
.SH Parameters 
The abscissa \fIx\fP and the function \fIu_x\fP  to be transformed must
be of the same size \f(CR[\fP1,N\f(CR]\fP or \f(CR[\fPN,1\f(CR]\fP.
The abscissa \fIs\fP and the Legendre conjugate function \fIu_star_s\fP
are of the same size \f(CR[\fP1,M\f(CR]\fP with \fIM\fP\f(CR<=\fP\fIN\fP. 
.SH Algorithm details
The linear time Legendre transform algorithm is based on  the use of a
concave regularization before slopes' computation.
.SH Examples
.SH Matlab
.sp
.ft CR
.nf
x=linspace(-5.,5.,1024);
u_x=-1+log(6+x);
plot(x,u_x);
% looks like a Reyni exponents function, isn't it ?
[s,u_star_s]=linearlt(x,u_x);
plot(s,u_star_s); 
.fi 
.ec
.ft P
.sp
.SH Scilab
.sp
.ft CR
.nf
// 
.fi 
.ec
.ft P
.sp
.SH References
None..SH See Also
\fBbbch\fP (C_LAB routine).