File: mcfg1d.cat

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (157 lines) | stat: -rw-r--r-- 8,206 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

mcfg1d(2)                      Scilab Function                      mcfg1d(2)
NAME
   mcfg1d - Continuous large deviation spectrum estimation on 1d measure

  Author: Christophe Canus

  This C_LAB routine estimates the continuous large deviation spectrum on 1d
  measure.

Usage
  [alpha,fgc_alpha,[pc_alpha,epsilon_star,eta,alpha_eta_x]]=
  mcfg1d(mu_n,[S_min,S_max,J],progstr,ballstr,N,epsilon,contstr,adapstr,kernstr,normstr,I_n])

Input parameters
       o mu_n : strictly positive real vector [1,N_n] or [N_n,1] Contains the
         1d measure.
       o S_min : strictly positive real scalar Contains the minimum size.
       o S_max : strictly positive real scalar Contains the maximum size.
       o J : strictly positive real (integer) scalar Contains the number of
         scales.
       o progstr : string Contains the string which specifies the scale pro-
         gression.
       o ballstr : string Contains the string which specifies the type of
         ball.
       o N : strictly positive real (integer) scalar Contains the number of
         Hoelder exponents.
       o epsilon : strictly positive real vector [1,N] or [N,1] Contains the
         precisions.
       o contstr : string Contains the string which specifies the definition
         of continuous spectrum.
       o adapstr : string Contains the string which specifies the precision
         adaptation.
       o kernstr : string Contains the string which specifies the kernel
         form.
       o normstr : string Contains the string which specifies the pdf's nor-
         malization.
       o I_n : strictly positive real vector [1,N_n] or [N_n,1] Contains the
         intervals on which the pre-multifractal 1d measure is defined.
Output parameters
       o alpha : real vector [1,N] Contains the Hoelder exponents.
       o fgc_alpha : real matrix [J,N] Contains the spectrum(a).
       o pc_alpha : real matrix [J,N] Contains the pdf('s).
       o epsilon_star : strictly positive real matrix [J,N] Contains the
         optimal precisions.
       o eta : strictly positive real vector [1,J]
          Contains the sizes.
       o alpha_eta_x : strictly positive real matrix [J,N_n]  Contains the
         coarse grain Hoelder exponents.
Description

Parameters
  The continuous  large   deviation  spectrum (alpha,fgc_alpha)  is estimated
  for J sizes eta_j and  for  the precision vector epsilon  by taking into
  account  the resolution of the 1d measure mu_n.  The minimum size S_min
  sets the equivalent size eta_1 in the unit interval at which the first
  spectrum is estimated.  eta_1 is equal to  S_min*eta_n    where  eta_n is
  related    to  the resolution of the  1d measure (eta_n=N_n{-1}  when all
  intervals are of    equal  size else it is    max(|I_n|{-1}).   It must be
  >=1.  The default value for S_min is 1.  The maximum size S_max sets the
  equivalent size eta_J in the unit interval at which the  last spectrum is
  estimated.  eta_J is equal to S_max*eta_n.  It must be >=S_min.  The
  default value for S_max is 1.  The number  of scales J sets  the number of
  computed spectra. The bigger  J   is,  the slower   the   computation  is.
  It  must be >=1. The default value for J is 1.  The scale progression
  string  progstr specifies the type of scale discretization.  It can be
  'dec' for decimated,  'log' for logarithmic or 'lin'  for  linear scale.
  The default value  for progstr is 'dec'.  The   ball   string    ballstr
  specifies  the      type  of ball B_eta(x). It can be 'asym'  for asym-
  metric, 'cent'  for centered or 'star' for three  times bigger asymmetric
  ball.   The default value for ballstr is 'asym'.  The   number N sets the
  discretization   of the Hoelder exponents interval.   They  are linearly
  spaced between alpha_eta_min and alpha_eta_max  which are the   minimum and
  maximum  values of the coarse grain Hoelder  exponents  at size eta.  The
  bigger N is, the  slower the computation is.   It must be >=1. The default
  value for N is 100.  The  precision vector epsilon  sets the  precisions at
  which  the spectrum  is estimated.    It  must  be  of size   [1,N]  or
  [N,1].   When no precision vector  is given as input or when it is uni-
  formly  equal to  0,  the  algorithm determines  the  optimal precisions
  vector    epsilon_star.    The  default   value  for epsilon is zeros(1,N).
  The continuous    string contstr  specifies   the   definition of continu-
  ous spectrum.  It can be equal to 'hnokern' for definition without preci-
  sion   and  kernel or  'hkern'  for  definition with precision   and  ker-
  nel.  The default       value    for  contstr is 'hkern'.  The  precision
  adaptation   string  adapstr specifies  the local adaptation  of the preci-
  sion  w.r.t. the Hoelder exponents alpha.  It     can  be  equal to   'max-
  dev'    for  maximum  deviation or 'maxadaptdev' for  maximum adaptive
  deviation.  The default value for adapstr is 'maxdev'.  The kernel string
  kernstr specifies the  kernel. It can be equal to  'box' for boxcar,  'tri'
  for  triangle, 'mol'  for mollifier,  'epa'  for epanechnikhov  or  'gau'
  for gaussian kernel.  The default value for kernstr is 'gau'.  The normali-
  zation string    normstr specifies the type   of pdf's normalization  con-
  ducted  before double log-normalization.   It can be equal to 'nonorm' for
  no normalization  conducted, 'suppdf' for normalization  w.r.t the
  supremum of pdf's,  'infsuppdf' for normalization  w.r.t  the  infimum and
  the   supremum  of pdf's.   The default value for normstr is 'suppdf'.  The
  intervals vector I_n can   be useful  when the intervals  on which the
  pre-multifractal 1d measure is defined are not of equal size (not imple-
  mented yet).  The  pdf  of the  coarse grain   Hoelder  exponents  matrix
  or vector pc_alpha,   the     optimal   precisions      matrix   or  vector
  epsilon_star, the  sizes vector  eta and the   coarse grain Hoelder
  exponents matrix or vector alpha_eta_x can be obtained as outputs parame-
  ters.

Algorithm details
  The coarse Hoelder exponents are estimated on each point x of the unit
  interval  discretization by   summing  interval measures  into  a sliding
  window of  size eta containing x (which  corresponds to ball B_eta(x)).
  The probability density function pc_alpha is obtained by integrating hor-
  izontal sections.

Examples

Matlab

  % synthesis of pre-multifractal binomial measure: mu_n
  % resolution of the pre-multifractal measure
  n=10;
  % parameter of the binomial measure
  p_0=.4;
  % synthesis of the pre-multifractal beiscovitch 1d measure
  mu_n=binom(p_0,'meas',n);
  % continuous large deviation spectrum estimation: fgc_alpha
  %  minimum size, maximum size & # of scales
  S_min=1;S_max=8;J=4;
  % # of hoelder exponents, precision vector
  N=200;epsilon=zeros(1,N);
  % estimate the continuous large deviation spectrum
  [alpha,fgc_alpha,pc_alpha,epsilon_star]=mcfg1d(mu_n,[S_min,S_max,J],'dec','cent',N,epsilon,'hkern','maxdev','gau','suppdf');
  % plot the continuous large deviation spectrum
  plot(alpha,fgc_alpha);
  title('Continuous Large Deviation spectrum');
  xlabel('lpha');
  ylabel('f_{g,\ta}^{c,\psilon}(lpha)');
Scilab

  // computation of pre-multifractal besicovitch measure: mu_n
  // resolution of the pre-multifractal measure
  n=10;
  // parameter of the besicovitch measure
  p_0=.4;
  // synthesis of the pre-multifractal besicovitch 1d measure
  [mu_n,I_n]=binom(p_0,'meas',n);
  // continuous large deviation spectrum estimation: fgc_alpha
  // minimum size, maximum size & # of scales
  S_min=1;S_max=8;J=4;
  // # of hoelder exponents, precision vector
  N=200;epsilon=zeros(1,N);
  // estimate the continuous large deviation spectrum
  [alpha,fgc_alpha,pc_alpha,epsilon_star]=mcfg1d(mu_n,[S_min,S_max,J],'dec','cent',N,epsilon,'hkern','maxdev','gau','suppdf');
  // plot the Continuous Large Deviation spectrum
  plot2d(a,f,[6]);
  xtitle(["Continuous Large Deviation spectrum";" "],"alpha","fgc(alpha)");
References
  To be published..SH See Also mch1d, fch1d, fcfg1d, cfg1d (C_LAB routines).
  MFAG_continuous, MFAG_epsilon, MFAG_eta, MFAG_epsilon_eta (Matlab and/or
  Scilab functions).