File: mdfl2d.man

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (84 lines) | stat: -rw-r--r-- 1,760 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
.TH "mdfl2d" 2 "March 12, 1998" "Fractales Group" "Scilab Function"
.so ../sci.an
.SH NAME
mdfl2d - Discrete Legendre spectrum estimation on 2d measure 
.sp
Author: Christophe Canus
.sp
This routine estimates the discrete Legendre spectrum on a
pre-multifractal 2d measure.
.sp
.sp
.SH Usage
\f(CR[\fPalpha,fl_alpha\f(CR]\fP=mdfl2d(mu_n,N,n)
.SH Input parameters


.RS

.TP
o 
\fBmu_n\fP : strictly positive real matrix
\f(CR[\fPnux_n,nuy_n\f(CR]\fP
Contains the pre-multifractal measure.

.TP
o 
\fBN\fP : strictly positive real (integer) scalar 
Contains the number of Hoelder exponents.

.TP
o 
\fBn\fP : strictly positive real (integer) scalar 
Contains the final resolution.
.RE

.SH Output parameters


.RS

.TP
o 
\fBalpha\fP : real vector \f(CR[\fP1,N\f(CR]\fP
Contains the Hoelder exponents.

.TP
o 
\fBfl_alpha\fP : real vector \f(CR[\fP1,N\f(CR]\fP
Contains the dimensions.
.RE

.SH Description
.SH Parameters
 
The  discrete Legendre  spectrum   \fIfl_alpha\fP is estimated   on the
finite finer resolution  of the 2d  measure \fImu_n\fP. The three steps
of the estimation are:


.RS

.TP
o 
estimation of the discrete partition function;

.TP
o 
estimation of the Reyni exponents;  

.TP
o 
estimation of the Legendre transform.
.RE

.SH Algorithm details 
The discrete partition function is estimated by coarse-graining masses
mu_n into     non-overlapping  boxes   of   increasing  diameter  (box
method).  If \fInux_n\fP   and  \fInuy_n\fP  are power   of 2,  2\(ha\fIn\fP
corresponds to the coarser scale.
The Reyni exponents are estimated by least square linear regression.
The Legendre transform of the mass exponent function is estimated with
the linear-time Legendre transform. 
.SH See also
\fBmdznq1d,mdznq2d,reynitq,linearlt,mdfl1d\fP.