File: mdzq1d.cat

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (38 lines) | stat: -rw-r--r-- 1,205 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

mdznq1d(2)                     Scilab Function                     mdznq1d(2)
NAME
  mdznq1d - Discrete partition function estimation on 1d measure

  Author: Christophe Canus

  This routine computes the discrete partition function on a pre-multifractal
  1d measure.

Usage
  [mznq]=mdznq1d(mu_n,n,q)

Input parameters
       o mu_n : strictly positive real vector Contains the pre-multifractal
         measure.
       o n : strictly positive real (integer) vector Contains the resolu-
         tions.
       o q : strictly positive real vector Contains the exponents.
Output parameters
       o mznq : real matrix [size(q),size(n)] Contains the partition func-
         tion.
Description

Parameters

  The discrete partition function mznq is computed on the pre-multifractal 1d
  measure mu_n.  The vector of resolutions n and the vector of exponents q
  sets the size of the output real matrix mznq to size(q)*size(n).

Algorithm details

  The discrete partition function mznq is computed by coarse-graining masses
  mu_n into non-overlapping boxes of increasing diameter (box method). If
  nu_n is a power of 2, n corresponds to the resolution.

See also
  mdzq2d,reynitq,linearlt,mdfl1d,mdfl2d.