File: oscillsing.man

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (70 lines) | stat: -rw-r--r-- 1,534 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
.TH "oscillsing" 2 " June 6th 1997" "Fractales Group" "Scilab Function"
.so ../sci.an
.SH NAME
oscillsing - Oscillating Singularity synthesis
.sp
Author: Paulo Goncalves 
.sp
Generates oscillating singularities located in the interval \f(CR[\fP0 .. 1\f(CR]\fP
.sp
.sp
.SH Usage
\f(CR[\fPx,Fj,Fs\f(CR]\fP = oscillsing(alpha,beta,sing_pos,N,show) ;
.SH Input parameters


.RS

.TP
o 
\fB alpha \fP : Real positive vector \f(CR[\fP1,n_sing\f(CR]\fP or \f(CR[\fPn_sing,1\f(CR]\fP 
Holder strenghts of the singularities

.TP
o 
\fB beta \fP : Real positive vector \f(CR[\fP1,n_sing\f(CR]\fP or \f(CR[\fPn_sing,1\f(CR]\fP 
Chirp exponents of the singularities

.TP
o 
\fB sing_pos \fP : Real vector \f(CR[\fP1,n_sing\f(CR]\fP or \f(CR[\fPn_sing,1\f(CR]\fP 
Location of the singularities in the interval  \f(CR[\fP0 .. 1\f(CR]\fP

.TP
o 
\fB N \fP : Integer
Sample size for the synthesized signal

.TP
o 
\fB show \fP : flag 0/1
\fI flag \fP = 0 : no display  
\fI flag \fP = 1 : displays the instantaneous frequencies and the
synthesized signal
.RE

.SH Output parameters


.RS

.TP
o 
\fB x \fP : real vector  \f(CR[\fP1,N\f(CR]\fP 
Time samples of the synthesized signal

.TP
o 
\fB Fj \fP : real matrix \f(CR[\fPN,n_sing\f(CR]\fP 
instantaneous frequencies (each column of \fIFj\fP contains the
frequency chirp of each singularity)

.TP
o 
\fB Fs \fP : real 
sampling frequency
.RE

.SH See also:
.SH Example:
\f(CR[\fPx,Fj,Fs\f(CR]\fP = oscillsing(\f(CR[\fP1/2 1 2\f(CR]\fP,\f(CR[\fP1 2 4\f(CR]\fP,\f(CR[\fP-0.5 0 0.5\f(CR]\fP,256,1) ;