File: sim_stable.man

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (68 lines) | stat: -rw-r--r-- 1,772 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
.TH "sim_stable" 2 " 1 April 1997" "Fractales Group" "Scilab Function"
.so ../sci.an
.SH NAME
sim_stable - Generation of stable random processes
.sp
Author: Lotfi Belkacem
.sp
This routine generates a \fIstable random process\fP and its \fIincrements\fP using the Chambers, Mallows and Stuck (1976) algorithm. 
.sp
.sp
.SH Usage
\f(CR[\fPproc,inc\f(CR]\fP=sim_stable(alpha,beta,mu,gamma,size)
.SH Input parameters


.RS

.TP
o 
\fBalpha\fP : real positive scalar between 0 and 2. 
This parameter is often referred to as the characteristic exponent. 

.TP
o 
\fBbeta\fP : real scalar between -1 and +1. 
This parameter is often referred to as the skewness parameter.

.TP
o 
\fBmu\fP : real scalar 
This parameter is often referred to as the location parameter.
It is equal to the expectation when alpha is greater than 1.

.TP
o 
\fBgamma\fP : real positive scalar. 
This parameter is often referred to as the scale parameter.
It is equal to the standard deviation over two squared when alpha equal 2.

.TP
o 
\fBsize\fP : integer positive scalar. 
size of the simulated sample.
.RE

.SH Output parameters


.RS

.TP
o 
\fBproc\fP : real vector \f(CR[\fPsize,1\f(CR]\fP 
corresponding to the stable random process.

.TP
o 
\fBinc\fP : real vector \f(CR[\fPsize,1\f(CR]\fP 
corresponding to the increments of the simulated process.
.RE

.SH Examples
.SH Example 1
\f(CR[\fPproc,inc\f(CR]\fP=sim_stable(2,0,0,1.4142136,5000);
generates a standard stable random process with alpha=2, beta=0 (symmetric), mu=0 and gamma=1.4142 which coinside with a standard gaussian process (Brownian motion). To visualize the process or the increments use  plot(proc) or plot(inc). 
.SH Example 2
\f(CR[\fPproc,inc\f(CR]\fP=sim_stable(1.5,0,0,1,5000);
generates a standard 1.5-stable motion