1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
  
     | 
    
      
stable_test(2)                 Scilab Function                 stable_test(2)
NAME
  stable_test - stable law conformicy test
  Author: Lotfi Belkacem
  This routine tests the stability property of a signal.
Usage
  [param,sd_param]=stable_test(maxr,data)
Input parameters
       o maxr : integer positive scalar. maximum resolution witch depend on
         the size of the sample.
       o data : real vector [size,1] corresponding to the data sample (incre-
         ments of the signal).
Output parameters
       o param : real matrix [maxr,4] corresponding to the four estimated
         parameters  of the fited stable law at each level of resolution.
         param(i,:), for i=1, ...maxr, gives respectively
         alpha(characteristic exponent), beta (skewness parameter), mu (loca-
         tion parameter), gamma (scale parameter) estimated at the resolution
         i.
       o sd_param : real matrix [maxr,4] corresponding to the estimated stan-
         dard deviations of the four previous parameters at each level of
         resolution.  sd_param(i,:), for i=1, ...maxr, gives respectively
         standard deviation of alpha, beta, mu and gamma estimated at the
         resolution i.
Description
  The stability test consists on estimating parameters of a fited alpha-
  satble law at different level of resolution. the variable is said to be
  stable if the charateristic exponent alpha remains approximatively constant
  at different resolution, and the scale parameter follows a scaling law with
  exponent (1/alpha)-1.   .SH Example under scilab type:
  [proc1_5,inc1_5]=sim_stable(1.5,0,0,1,20000);
  [param,sd_param]=stable_test(7,inc1_5); alpha=param(:,1); m=(1:7)';
  lnm=log(m); plot2d(m,alpha,1,'111','alpha',[1,0,7,2]); gamma=param(:,4);
  lngamma=log(gamma); plot(lnm,lngamma); [a,b,sig]=reglin(lnm',lngamma');
  slope=a th_slope=1/1.5-1
       o  we generate a standard 1.5-stable motion and its increments.
       o  we test the stability property of the previous simutated 1.5-stable
         random variable "inc1_5" at 7 resolutions.
       o  we list estimated alpha at different scales.
       o  we visualize the stability of the shape parameter alpha.
       o  we list estimated gamma at different scales.
       o  we visualize the scaling law of the scale parameter gamma with a
         log-log plot in the space (scale,scale parameter).
       o  we compute the slope "a" of the fited line which will be compared
         to (1/alpha-1).
 
     |