1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
  
     | 
    
      .TH "stable_test" 2 " 1 April 1997" "Fractales Group" "Scilab Function"
.so ../sci.an
.SH NAME
stable_test - stable law conformicy test 
.sp
Author: Lotfi Belkacem
.sp
This routine tests the \fIstability property\fP of a signal. 
.sp
.sp
.SH Usage
\f(CR[\fPparam,sd_param\f(CR]\fP=stable_test(maxr,data)
.SH Input parameters
.RS
.TP
o 
\fBmaxr\fP : integer positive scalar. 
maximum resolution witch depend on the size of the sample.
.TP
o 
\fBdata\fP : real vector \f(CR[\fPsize,1\f(CR]\fP 
corresponding to the data sample (increments of the signal).
.RE
.SH Output parameters
.RS
.TP
o 
\fBparam\fP : real matrix \f(CR[\fPmaxr,4\f(CR]\fP 
corresponding to the four estimated parameters  of the fited stable law at each level of resolution.
param(i,:), for i=1, ...maxr, gives respectively alpha(characteristic exponent), beta (skewness parameter), mu (location parameter), gamma (scale parameter) estimated at the resolution i. 
.TP
o 
\fBsd_param\fP : real matrix \f(CR[\fPmaxr,4\f(CR]\fP 
corresponding to the estimated standard deviations of the four previous parameters at each level of resolution.
sd_param(i,:), for i=1, ...maxr, gives respectively standard deviation of alpha, beta, mu and gamma estimated at the resolution i. 
.RE
.SH Description
The stability test consists on estimating parameters of a fited alpha-satble law at different level of resolution. the variable is said to be stable if the charateristic exponent alpha remains approximatively constant at different resolution, and the scale parameter follows a scaling law with exponent (1/alpha)-1.   .SH Example
under scilab type:
\f(CR[\fPproc1_5,inc1_5\f(CR]\fP=sim_stable(1.5,0,0,1,20000);
\f(CR[\fPparam,sd_param\f(CR]\fP=stable_test(7,inc1_5);
alpha=param(:,1);
m=(1:7)';
lnm=log(m);
plot2d(m,alpha,1,'111','alpha',\f(CR[\fP1,0,7,2\f(CR]\fP);
gamma=param(:,4);
lngamma=log(gamma);
plot(lnm,lngamma);
\f(CR[\fPa,b,sig\f(CR]\fP=reglin(lnm',lngamma');
slope=a 
th_slope=1/1.5-1 
.RS
.TP
o 
 we generate a standard 1.5-stable motion and its increments.
.TP
o 
 we test the stability property of the previous simutated 1.5-stable random variable "inc1_5" at 7 resolutions. 
.TP
o 
 we list estimated alpha at different scales.
.TP
o 
 we visualize the stability of the shape parameter alpha.
.TP
o 
 we list estimated gamma at different scales.
.TP
o 
 we visualize the scaling law of the scale parameter gamma with a log-log plot in the space (scale,scale parameter).
.TP
o 
 we compute the slope "a" of the fited line which will be compared to (1/alpha-1).
.RE
.SH 
 
     |