File: stable_test.man

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (94 lines) | stat: -rw-r--r-- 2,563 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
.TH "stable_test" 2 " 1 April 1997" "Fractales Group" "Scilab Function"
.so ../sci.an
.SH NAME
stable_test - stable law conformicy test 
.sp
Author: Lotfi Belkacem
.sp
This routine tests the \fIstability property\fP of a signal. 
.sp
.sp
.SH Usage
\f(CR[\fPparam,sd_param\f(CR]\fP=stable_test(maxr,data)
.SH Input parameters


.RS

.TP
o 
\fBmaxr\fP : integer positive scalar. 
maximum resolution witch depend on the size of the sample.

.TP
o 
\fBdata\fP : real vector \f(CR[\fPsize,1\f(CR]\fP 
corresponding to the data sample (increments of the signal).
.RE

.SH Output parameters


.RS

.TP
o 
\fBparam\fP : real matrix \f(CR[\fPmaxr,4\f(CR]\fP 
corresponding to the four estimated parameters  of the fited stable law at each level of resolution.
param(i,:), for i=1, ...maxr, gives respectively alpha(characteristic exponent), beta (skewness parameter), mu (location parameter), gamma (scale parameter) estimated at the resolution i. 

.TP
o 
\fBsd_param\fP : real matrix \f(CR[\fPmaxr,4\f(CR]\fP 
corresponding to the estimated standard deviations of the four previous parameters at each level of resolution.
sd_param(i,:), for i=1, ...maxr, gives respectively standard deviation of alpha, beta, mu and gamma estimated at the resolution i. 
.RE

.SH Description
The stability test consists on estimating parameters of a fited alpha-satble law at different level of resolution. the variable is said to be stable if the charateristic exponent alpha remains approximatively constant at different resolution, and the scale parameter follows a scaling law with exponent (1/alpha)-1.   .SH Example
under scilab type:
\f(CR[\fPproc1_5,inc1_5\f(CR]\fP=sim_stable(1.5,0,0,1,20000);
\f(CR[\fPparam,sd_param\f(CR]\fP=stable_test(7,inc1_5);
alpha=param(:,1);
m=(1:7)';
lnm=log(m);
plot2d(m,alpha,1,'111','alpha',\f(CR[\fP1,0,7,2\f(CR]\fP);
gamma=param(:,4);
lngamma=log(gamma);
plot(lnm,lngamma);
\f(CR[\fPa,b,sig\f(CR]\fP=reglin(lnm',lngamma');
slope=a 
th_slope=1/1.5-1 


.RS

.TP
o 
 we generate a standard 1.5-stable motion and its increments.

.TP
o 
 we test the stability property of the previous simutated 1.5-stable random variable "inc1_5" at 7 resolutions. 

.TP
o 
 we list estimated alpha at different scales.

.TP
o 
 we visualize the stability of the shape parameter alpha.

.TP
o 
 we list estimated gamma at different scales.

.TP
o 
 we visualize the scaling law of the scale parameter gamma with a log-log plot in the space (scale,scale parameter).

.TP
o 
 we compute the slope "a" of the fited line which will be compared to (1/alpha-1).
.RE
.SH