File: aff2ab.cat

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (81 lines) | stat: -rw-r--r-- 2,912 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

aff2ab(1)                      Scilab Function                      aff2ab(1)
NAME
  aff2ab - linear (affine) function to A,b conversion

CALLING SEQUENCE
  [A,b]=aff2ab(afunction,dimX,D [,flag])

PARAMETERS

  afunction : a scilab function  Y =fct(X,D)  where X, D, Y are list of
            matrices

  dimX      : a p x 2 integer matrix (p is the number of matrices in X)

  D         : a list of real matrices (or any other valid Scilab object).

  flag      : optional parameter (flag='f' or flag='sp')

  A         : a real matrix

  b         : a real vector having same row dimension as A

DESCRIPTION
  aff2ab  returns the matrix representation of an affine function (in the
  canonical basis).

  afunction is a function with imposed syntax:
   Y=afunction(X,D)  where  X=list(X1,X2,...,Xp)  is a list of p real
  matrices, and  Y=list(Y1,...,Yq)  is a list of q real real matrices which
  depend linearly of the  Xi's. The (optional) input  D contains parameters
  needed to compute Y as a function of X. (It is generally a list of
  matrices).

   dimX is a p x 2 matrix: dimX(i)=[nri,nci] is the actual number of rows and
  columns of matrix Xi.  These dimensions determine na, the column dimension
  of the resulting matrix A: na=nr1*nc1 +...+ nrp*ncp.

  If the optional parameter flag='sp' the resulting A matrix is returned as a
  sparse matrix.

  This function is useful to solve a system of linear equations where the
  unknown variables are matrices.
EXAMPLE
  // Lyapunov equation solver (one unknown variable, one constraint)
  deff('Y=lyapunov(X,D)','[A,Q]=D(:);Xm=X(:); Y=list(A''*Xm+Xm*A-Q)')
  A=rand(3,3);Q=rand(3,3);Q=Q+Q';D=list(A,Q);dimX=[3,3];
  [Aly,bly]=aff2ab(lyapunov,dimX,D);
  [Xl,kerA]=linsolve(Aly,bly); Xv=vec2list(Xl,dimX); lyapunov(Xv,D)
  Xm=Xv(:); A'*Xm+Xm*A-Q

  // Lyapunov equation solver with redundant constraint X=X'
  // (one variable, two constraints) D is global variable
  deff('Y=ly2(X,D)','[A,Q]=D(:);Xm=X(:); Y=list(A''*Xm+Xm*A-Q,Xm''-Xm)')
  A=rand(3,3);Q=rand(3,3);Q=Q+Q';D=list(A,Q);dimX=[3,3];
  [Aly,bly]=aff2ab(ly2,dimX,D);
  [Xl,kerA]=linsolve(Aly,bly); Xv=vec2list(Xl,dimX); ly2(Xv,D)

  // Francis equations
  // Find matrices X1 and X2 such that:
  // A1*X1 - X1*A2 + B*X2 -A3 = 0
  // D1*X1 -D2 = 0
  deff('Y=bruce(X,D)','[A1,A2,A3,B,D1,D2]=D(:),...
  [X1,X2]=X(:);Y=list(A1*X1-X1*A2+B*X2-A3,D1*X1-D2)')
  A1=[-4,10;-1,2];A3=[1;2];B=[0;1];A2=1;D1=[0,1];D2=1;
  D=list(A1,A2,A3,B,D1,D2);
  [n1,m1]=size(A1);[n2,m2]=size(A2);[n3,m3]=size(B);
  dimX=[[m1,n2];[m3,m2]];
  [Af,bf]=aff2ab(bruce,dimX,D);
  [Xf,KerAf]=linsolve(Af,bf);Xsol=vec2list(Xf,dimX)
  bruce(Xsol,D)

  // Find all X which commute with A
  deff('y=f(X,D)','y=list(D(:)*X(:)-X(:)*D(:))')
  A=rand(3,3);dimX=[3,3];[Af,bf]=aff2ab(f,dimX,list(A));
  [Xf,KerAf]=linsolve(Af,bf);[p,q]=size(KerAf);
  Xsol=vec2list(Xf+KerAf*rand(q,1),dimX);
  C=Xsol(:); A*C-C*A

SEE ALSO
  linsolve