File: bdiag.man

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (51 lines) | stat: -rw-r--r-- 1,156 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
.TH bdiag 2 "April 1993" "Scilab Group" "Scilab Function"
.so ../sci.an
.SH NAME
bdiag - block diagonalization, generalized eigenvectors
.SH CALLING SEQUENCE
.nf
[Ab [,X [,bs]]]=bdiag(A [,rmax]) 
.fi
.SH PARAMETERS
.TP
A 
: real or complex square matrix
.TP 6
rmax 
: real number
.TP 3
Ab
: real or complex square matrix
.TP 2
X
: real or complex non-singular matrix
.TP 3
bs
: vector of integers
.SH DESCRIPTION
.nf
[Ab [,X [,bs]]]=bdiag(A [,rmax]) 
.fi
performs the block-diagonalization of matrix \fVA\fR.
bs gives the structure of the blocks (respective sizes of the blocks).
\fVX\fR is the change of basis i.e 
.Vb Ab = inv(X)*A*X 
is block diagonal.
.LP
\fVrmax\fR controls the conditioning of \fVX\fR; the default value is the 
l1 norm of \fVA\fR. 
.LP
To get a diagonal form (if it exists) choose a large value for 
\fVrmax\fR (\fVrmax=1/%eps\fR for example). 
Generically (for real random A) the blocks are (1x1) and (2x2) and \fVX\fR 
is the matrix of eigenvectors.
.SH EXAMPLE
.nf
//Real case: 1x1 and 2x2 blocks
a=rand(5,5);[ab,x,bs]=bdiag(a);ab
//Complex case: complex 1x1 blocks
[ab,x,bs]=bdiag(a+%i*0);ab
.fi
.SH SEE ALSO
schur, sylv, spec