File: fstair.man

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (86 lines) | stat: -rw-r--r-- 2,111 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
.TH fstair G "April 1993" "Scilab Group" "Scilab Function"
.so ../sci.an
.SH NAME
fstair  - computes  pencil  column echelon form by qz transformations
.SH CALLING SEQUENCE
.nf
[AE,EE,QE,ZE,blcks,muk,nuk,muk0,nuk0,mnei]=fstair(A,E,Q,Z,stair,rk,tol)
.fi
.SH PARAMETERS
.TP
A
: m x n matrix with real  entries.
.TP
tol
: real positive scalar.
.TP
E
: column echelon form matrix
.TP
Q
: m x m unitary matrix
.TP
Z
: n x n unitary matrix
.TP
stair
: vector of indexes (see ereduc)
.TP
rk 
: integer, estimated rank of the matrix
.TP
AE
: m x n matrix with real  entries.
.TP
EE
: column echelon form matrix
.TP
QE
: m x m unitary matrix
.TP
ZE
: n x n unitary matrix
.TP
nblcks 
:is the number of submatrices having full row rank >= 0  detected in
matrix  A\fR.
.TP
muk:
 integer array of dimension (n). Contains the column dimensions mu(k)
 (k=1,...,nblcks) of the submatrices having full column
 rank in the pencil sE(eps)-A(eps)
.TP
nuk:
 integer array of dimension (m+1). Contains the row dimensions nu(k)
 (k=1,...,nblcks) of the submatrices having full row
 rank in the pencil sE(eps)-A(eps)
.TP
muk0:
 integer array of dimension (n). Contains the column dimensions mu(k)
 (k=1,...,nblcks) of the submatrices having full column
 rank in the pencil sE(eps,inf)-A(eps,inf)
.TP
nuk:
 integer array of dimension (m+1). Contains the row dimensions nu(k)
 (k=1,...,nblcks) of the submatrices having full row
 rank in the pencil sE(eps,inf)-A(eps,inf)
.TP
mnei:
 integer array of dimension (4). mnei(1) = row dimension of sE(eps)-A(eps)

.SH DESCRIPTION

Given a pencil \fVsE-A\fR where matrix \fVE\fR is in column echelon form the
function  \fVfstair\fR computes according to the wishes of the user a
unitary transformed pencil \fVQE(sEE-AE)ZE\fR which is more or less similar
to the generalized Schur form of the pencil \fVsE-A\fR.
The function  yields also part of the Kronecker structure of
the given pencil.
.LP

\fVQ,Z\fR are the unitary matrices used to compute the pencil where E
is in column echelon form (see ereduc)
.SH AUTHOR
Th.G.J. Beelen (Philips Glass Eindhoven). SLICOT
.SH SEE ALSO
quaskro, ereduc