File: glever.man

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (53 lines) | stat: -rw-r--r-- 1,059 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
.TH glever 1 "April 1993" "Scilab Group" "Scilab Function"
.so ../sci.an
.SH NAME
glever - inverse of matrix pencil 
.SH CALLING SEQUENCE
.nf
[Bfs,Bis,chis]=glever(E,A [,s])
.fi
.SH PARAMETERS
.TP 12
E, A
: two real square matrices of same dimensions
.TP
s
: character string (default value '\fVs\fR')
.TP
Bfs,Bis
: two polynomial matrices
.TP
chis
: polynomial
.SH DESCRIPTION
Computation of 
.IG
(s*E-A)^-1
.FI
.LA $(sE-A)^{-1} $
 by generalized Leverrier's algorithm for a matrix pencil.
.nf
(s*E-A)^-1 = (Bfs/chis) - Bis.
.fi
\fVchis\fR = characteristic polynomial (up to a multiplicative constant).
.LP
\fVBfs\fR  = numerator polynomial matrix.
.LP
\fVBis\fR
= polynomial matrix ( - expansion of \fV(s*E-A)^-1\fR at infinity).
.LP
Note the - sign before \fVBis\fR.

.SH Caution 
This function uses \fVcleanp\fR to simplify \fVBfs,Bis\fR and \fVchis\fR.
.SH EXAMPLE
.nf
s=%s;F=[-1,s,0,0;0,-1,0,0;0,0,s-2,0;0,0,0,s-1];
[Bfs,Bis,chis]=glever(F)
inv(F)-((Bfs/chis) - Bis)
.fi
.SH AUTHOR
F. D. (1988)
.SH SEE ALSO
rowshuff, det, invr, coffg, pencan, penlaur