File: gspec.man

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (40 lines) | stat: -rw-r--r-- 952 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
.TH gspec G "April 1993" "Scilab Group" "Scilab Function"
.so ../sci.an
.SH NAME
gspec - eigenvalues of matrix pencil
.SH CALLING SEQUENCE
.nf
[al,be]=gspec(A,E)
[al,be,Z]=gspec(A,E)
.fi
.SH PARAMETERS
.TP 10
A, E
: real square matrices
.TP
al, be
: real vectors
.TP
Z
: real square non-singular matrix
.SH DESCRIPTION
.Vb [al,be] = gspec(A,E) 
returns the spectrum of the matrix pencil
s E - A, i.e. the roots of the polynomial matrix s E - A.
The eigenvalues are given by \fVal./be\fR and if \fVbe(i) = 0\fR the ith
eigenvalue is at infinity. (For \fVE = eye(A), al./be\fR is \fVspec(A)\fR).
.LP
.Vb [al,be,Z] = gspec(A,E)
returns in addition the matrix \fVZ\fR of generalized
right eigenvectors of the pencil.
.SH EXAMPLE
.nf
A=rand(3,3);
[al,be,Z] = gspec(A,eye(A));al./be
clean(inv(Z)*A*Z)  //displaying the eigenvalues (generic matrix)
A=A+%i*rand(A);E=rand(A);
roots(det(%s*E-A))   //complex case
.fi
.SH SEE ALSO
gschur, balanc, spec, kroneck