File: randpencil.cat

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (47 lines) | stat: -rw-r--r-- 1,363 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

quaskro(1)                     Scilab Function                     quaskro(1)
NAME
  randpencil - random pencil

CALLING SEQUENCE
  F=randpencil(eps,infi,fin,eta)

PARAMETERS

  eps  : vector of integers

  infi : vector of integers

  fin  : real vector, or monic polynomial, or vector of monic polynomial

  eta  : vector of integers

  F    : real matrix pencil F=s*E-A  (s=poly(0,'s'))

DESCRIPTION
  Utility function.  F=randpencil(eps,infi,fin,eta) returns a random pencil F
  with given Kronecker structure. The structure is given by:
  eps=[eps1,...,epsk]: structure of epsilon blocks (size eps1x(eps1+1),....)
  fin=[l1,...,ln]  set of finite eigenvalues (assumed real)  (possibly [])
  infi=[k1,...,kp] size of J-blocks at infinity ki>=1  (infi=[] if no J
  blocks).  eta=[eta1,...,etap]: structure ofeta blocks (size
  eta1+1)xeta1,...)

  epsi's should be >=0, etai's should be >=0, infi's should be >=1.

  If fin is a (monic) polynomial, the finite block admits the roots of fin as
  eigenvalues.

  If fin is a vector of polynomial, they are the finite elementary divisors
  of F i.e. the roots of p(i) are finite eigenvalues of F.

EXAMPLE
  F=randpencil([0,1],[2],[-1,0,1],[3]);
  [Q,Z,Qd,Zd,numbeps,numbeta]=kroneck(F);
  Qd, Zd
  s=poly(0,'s');
  F=randpencil([],[1,2],s^3-2,[]); //regular pencil
  det(F)

SEE ALSO
  kroneck, pencan, penlaur