File: rowshuff.cat

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (46 lines) | stat: -rw-r--r-- 1,151 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

rowshuff(1)                    Scilab Function                    rowshuff(1)
NAME
  rowshuff - shuffle algorithm

CALLING SEQUENCE
  [Ws,Fs1]=rowshuff(Fs, [alfa])

PARAMETERS

  Fs   : square real pencil Fs = s*E-A

  Ws   : polynomial matrix

  Fs1  : square real pencil F1s = s*E1 -A1 with E1 non-singular

  alfa : real number (alfa = 0 is the default value)

DESCRIPTION
  Shuffle algorithm: Given the pencil Fs=s*E-A , returns Ws=W(s) (square
  polynomial matrix) such that:

   Fs1 = s*E1-A1 = W(s)*(s*E-A)  is a pencil with non singular E1 matrix.

  This is possible iff the pencil Fs = s*E-A  is regular (i.e. invertible).
  The degree of Ws is equal to the index of the pencil.

  The poles at infinity of Fs are put to alfa and the zeros of Ws are at
  alfa.

  Note that (s*E-A)^-1 = (s*E1-A1)^-1 * W(s) = (W(s)*(s*E-A))^-1 *W(s)

EXAMPLE
  F=randpencil([],[2],[1,2,3],[]);
  F=rand(5,5)*F*rand(5,5);   // 5 x 5 regular pencil with 3 evals at 1,2,3
  [Ws,F1]=rowshuff(F,-1);
  [E1,A1]=pen2ea(F1);
  svd(E1)           //E1 non singular
  roots(det(Ws))
  clean(inv(F)-inv(F1)*Ws,1.d-7)

SEE ALSO
  pencan, glever, penlaur

AUTHOR
  F. D.