1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
|
spantwo(1) Scilab Function spantwo(1)
NAME
spantwo - sum and intersection of subspaces
CALLING SEQUENCE
[Xp,dima,dimb,dim]=spantwo(A,B, [tol])
PARAMETERS
A, B : two real or complex matrices with equal number of rows
Xp : square non-singular matrix
dima, dimb, dim
: integers, dimension of subspaces
tol : nonnegative real number
DESCRIPTION
Given two matrices A and B with same number of rows, returns a square
matrix Xp (non singular but not necessarily orthogonal) such that :
[A1, 0] (dim-dimb rows)
Xp*[A,B]=[A2,B2] (dima+dimb-dim rows)
[0, B3] (dim-dima rows)
[0 , 0]
The first dima columns of inv(Xp) span range(A).
Columns dim-dimb+1 to dima of inv(Xp) span the intersection of range(A) and
range(B).
The dim first columns of inv(Xp) span range(A)+range(B).
Columns dim-dimb+1 to dim of inv(Xp) span range(B).
Matrix [A1;A2] has full row rank (=rank(A)). Matrix [B2;B3] has full row
rank (=rank(B)). Matrix [A2,B2] has full row rank (=rank(A inter B)).
Matrix [A1,0;A2,B2;0,B3] has full row rank (=rank(A+B)).
EXAMPLE
A=[1,0,0,4;
5,6,7,8;
0,0,11,12;
0,0,0,16];
B=[1,2,0,0]';C=[4,0,0,1];
Sl=ss2ss(syslin('c',A,B,C),rand(A));
[no,X]=contr(Sl('A'),Sl('B'));CO=X(:,1:no); //Controllable part
[uo,Y]=unobs(Sl('A'),Sl('C'));UO=Y(:,1:uo); //Unobservable part
[Xp,dimc,dimu,dim]=spantwo(CO,UO); //Kalman decomposition
Slcan=ss2ss(Sl,inv(Xp));
SEE ALSO
spanplus, spaninter
AUTHOR
F. D.
|