File: spantwo.man

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (62 lines) | stat: -rw-r--r-- 1,709 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
.TH spantwo 1 "April 1993" "Scilab Group" "Scilab Function"
.so ../sci.an 
.SH NAME
spantwo - sum and intersection of subspaces
.SH CALLING SEQUENCE
.nf
[Xp,dima,dimb,dim]=spantwo(A,B, [tol])
.fi
.SH PARAMETERS
.TP 10
A, B
: two real or complex matrices with equal number of rows
.TP
Xp
: square non-singular matrix
.TP
dima, dimb, dim
: integers, dimension of subspaces
.TP
tol
: nonnegative real number
.SH DESCRIPTION
Given two matrices \fVA\fR and \fVB\fR with same number of rows,
returns a square matrix \fVXp\fR (non singular but not necessarily orthogonal) 
such that :
.LP
.nf
         [A1, 0]    (dim-dimb rows)
Xp*[A,B]=[A2,B2]    (dima+dimb-dim rows)
         [0, B3]    (dim-dima rows)
         [0 , 0]
.fi
The  first \fVdima\fR  columns of \fVinv(Xp)\fR span range(\fVA\fR).
.LP
Columns \fVdim-dimb+1\fR to \fVdima\fR of \fVinv(Xp)\fR span the 
intersection of range(A) and range(B).
.LP
The \fVdim\fR first columns of \fVinv(Xp)\fR span 
range(\fVA\fR)+range(\fVB\fR).
.LP
Columns \fVdim-dimb+1\fR to \fVdim\fR of \fVinv(Xp)\fR span 
range(\fVB\fR). 
.LP
Matrix \fV[A1;A2]\fR has full row rank (=rank(A)). Matrix \fV[B2;B3]\fR has
full row rank (=rank(B)). Matrix \fV[A2,B2]\fR has full row rank (=rank(A inter B)). Matrix \fV[A1,0;A2,B2;0,B3]\fR has full row rank (=rank(A+B)).
.SH EXAMPLE
.nf
A=[1,0,0,4;
   5,6,7,8;
   0,0,11,12;
   0,0,0,16];
B=[1,2,0,0]';C=[4,0,0,1]; 
Sl=ss2ss(syslin('c',A,B,C),rand(A));
[no,X]=contr(Sl('A'),Sl('B'));CO=X(:,1:no);  //Controllable part
[uo,Y]=unobs(Sl('A'),Sl('C'));UO=Y(:,1:uo);  //Unobservable part
[Xp,dimc,dimu,dim]=spantwo(CO,UO);    //Kalman decomposition
Slcan=ss2ss(Sl,inv(Xp));
.fi             
.SH SEE ALSO
spanplus, spaninter
.SH AUTHOR
F. D.