File: svd.cat

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (46 lines) | stat: -rw-r--r-- 1,193 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

svd(G)                         Scilab Function                         svd(G)
NAME
  svd  -  singular value decomposition

CALLING SEQUENCE
  s=svd(X)
  [U,S,V]=svd(X)
  [U,S,V]=svd(X,0)
  [U,S,V,rk]=svd(X [,tol])

PARAMETERS

  X         : a real or complex matrix

  s         : real vector (singular values)

  S         : real diagonal matrix (singular values)

  U,V       : orthogonal or unitary square matrices (singular vectors).

  tol       : real number

DESCRIPTION
  [U,S,V] = svd(X) produces a diagonal matrix S , of the same dimension as X
  and with nonnegative diagonal elements in decreasing order, and unitary
  matrices U and V so that X = U*S*V'.

  [U,S,V] = svd(X,0) produces the economy size decomposition. If X is m-by-n
  with m > n, then only the first n columns of U are computed and S is n-by-
  n.

  s = svd(X) by itself, returns a vector s containing the singular values.

  [U,S,V,rk]=svd(X,tol) gives in addition rk, the numerical rank of X i.e.
  the number of singular values larger than tol.

  The default value of tol is the same as in rank.

EXAMPLE
  X=rand(4,2)*rand(2,4)
  svd(X)
  sqrt(spec(X*X'))

SEE ALSO
  rank, qr, colcomp, rowcomp, sva, spec