File: graph_union.cat

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (47 lines) | stat: -rw-r--r-- 1,438 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

graph_union(1)                 Scilab function                 graph_union(1)
NAME
  graph_union - union of two graphs

CALLING SEQUENCE
  g2 = graph_union(g,g1)

PARAMETERS

  g : graph list

  g1 : graph list

  g2 : graph list of the new graph

DESCRIPTION
  graph_union creates a new graph g2. The node set of g2 is the union (in the
  usual sense) of the node sets of g and g1.  g2 has an edge for each edge of
  g and an edge for each edge of g1.  The edges of g and g1 having the same
  endpoints are kept and in this case g2 has multiple edges.

EXAMPLE
  ta=[1 1 2 2 2 3 4 5 5 7 8 8 9 10 10 10 10 10 11 12 13 13 13 14 15 16 16 17 17];
  he=[2 10 3 5 7 4 2 4 6 8 6 9 7 7 11 13 13 15 12 13 9 10 14 11 16 1 17 14 15];
  g=make_graph('foo',1,17,ta,he);
  g('node_x')=[283 163 63 57 164 164 273 271 339 384 504 513 439 623 631 757 642];
  g('node_y')=[59 133 223 318 227 319 221 324 432 141 209 319 428 443 187 151 301];
  g('edge_color')=modulo([1:(edge_number(g))],15)+1;
  g('node_diam')=[1:(g('node_number'))]+20;
  g('node_name')=['A' 'B' 'C' 'D' 'E' 'F' 'G' 'H' 'I' 'J' 'K' 'L' 'M' 'N' 'O' 'P' 'Q'];
  show_graph(g);
  l=netwindows(); nw=l(2);
  v=[7 8 9 10 11 12 13];
  show_nodes(v);
  g1=subgraph(v,'nodes',g);
  show_graph(g1,'new');
  v=[1 2 5 6 7 8 9 10];
  netwindow(nw);
  show_nodes(v);
  g2=subgraph(v,'nodes',g);
  show_graph(g2,'new');
  g=graph_union(g1,g2);
  show_graph(g,'new');

SEE ALSO
  supernode, subgraph