File: min_qcost_flow.cat

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (72 lines) | stat: -rw-r--r-- 2,559 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

min_qcost_flow(1)              Scilab function              min_qcost_flow(1)
NAME
  min_qcost_flow - minimum quadratic cost flow

CALLING SEQUENCE
  [c,phi,flag] = min_qcost_flow(eps,g)

PARAMETERS

  eps : scalar, precision

  g : graph list

  c : value of cost

  phi : row vector of the value of flow on the arcs

  flag : feasible problem flag (0 or 1)

DESCRIPTION
  min_qcost_flow computes the minimum quadratic cost flow in the network g.
  It returns the total cost of the flows on the arcs c and the row vector of
  the flows on the arcs phi. eps is the precision of the iterative algorithm.
  If the problem is not feasible (impossible to find a compatible flow for
  instance), flag is equal to 0, otherwise it is equal to 1.

  The bounds of the flow are given by the elements edge_min_cap and
  edge_max_cap of the graph list. The value of the maximum capacity must be
  greater than or equal to the value of the minimum capacity.  If the value
  of edge_min_cap or edge_max_cap is not given (empty row vector []), it is
  assumed to be equal to 0 on each edge.

  The costs on the edges are given by the elements edge_q_orig and
  edge_q_weight of the graph list. The cost on arc u is given by:

  (1/2)*edge_q_weight[u](phi[u]-edge_q_orig[u])^2

  The costs must be non negative.  If the value of edge_q_orig or
  edge_q_weight is not given (empty row vector []), it is assumed to be equal
  to 0 on each edge.

  This function uses an algorithm due to M. Minoux.

EXAMPLE
  ta=[1 1 2 2 2 3 4 4 5 6 6 6 7 7 7 8 9 10 12 12 13 13 13 14 15 14 9 11 10 1 8];
  he=[2 6 3 4 5 1 3 5 1 7 10 11 5 8 9 5 8 11 10 11 9 11 15 13 14 4 6 9 1 12 14];
  g=make_graph('foo',1,15,ta,he);
  g('node_x')=[194 191 106 194 296 305 305 418 422 432 552 550 549 416 548];
  g('node_y')=[56 221 316 318 316 143 214 321 217 126 215 80 330 437 439];
  show_graph(g);
  g1=g; ma=arc_number(g1);
  rand('uniform');
  while %T then
    g1('edge_min_cap')=round(5*rand(1,ma));
    g1('edge_max_cap')=round(20*rand(1,ma))+30*ones(1,ma);
    g1('edge_q_orig')=0*ones(1,ma);
    g1('edge_q_weight')=ones(1,ma);
    [c,phi,flag]=min_qcost_flow(0.001,g1);
   if flag==1 then break; end;
  end;
  x_message(['The cost is: '+string(c);
            'Showing the flow on the arcs']);
  ii=find(phi<>0); edgecolor=phi; edgecolor(ii)=11*ones(ii);
  g1('edge_color')=edgecolor;
  edgefontsize=8*ones(1,ma); edgefontsize(ii)=18*ones(ii);
  g1('edge_font_size')=edgefontsize;
  g1('edge_label')=string(phi);
  show_graph(g1);

SEE ALSO
  min_lcost_cflow, min_lcost_flow1, min_lcost_flow2