File: min_weight_tree.cat

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (50 lines) | stat: -rw-r--r-- 2,118 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

min_weight_tree(1)             Scilab function             min_weight_tree(1)
NAME
  min_weight_tree - minimum weight spanning tree

CALLING SEQUENCE
  t = min_weight_tree([i],g)

PARAMETERS

  i : integer, node number of the root of the tree

  g : graph list

  t : row vector of integer numbers of the arcs of the tree if it exists

DESCRIPTION
  min_weight_tree tries to find a minimum weight spanning tree for the graph
  g. The optional argument i is the number of the root node of the tree; its
  default value is node number 1. This node is meaningless for an undirected
  graph.

  The weights are given by the element edge_weight of the graph list. If its
  value is not given (empty vector []), it is assumed to be equal to 0 on
  each edge.  Weigths can be positive, equal to 0 or negative. To compute a
  spanning tree without dealing with weights, give to weights a value of 0 on
  each edge or the empty vector [].

  min_weight_tree returns the tree t as a row vector of the arc numbers
  (directed graph) or edge numbers (undirected graph) if it exists or the
  empty vector [] otherwise. If the tree exists, the dimension of t is the
  number of nodes less 1.  If t(i) is the root of the tree:
    - for j < i, t(j) is the number of the arc in the tree after
        node t(j)
    - for j > i, t(j) is the number of the arc in the tree before
        node t(j)
EXAMPLE
  ta=[1 1 2 2 2 3 4 5 5 7 8 8 9 10 10 10 11 12 13 13 13 14 15 16 16 17 17];
  he=[2 10 3 5 7 4 2 4 6 8 6 9 7 7 11 15 12 13 9 10 14 11 16 1 17 14 15];
  g=make_graph('foo',1,17,ta,he);
  g('node_x')=[283 163 63 57 164 164 273 271 339 384 504 513 439 623 631 757 642];
  g('node_y')=[59 133 223 318 227 319 221 324 432 141 209 319 428 443 187 151 301];
  show_graph(g);
  t=min_weight_tree(1,g);
  g1=g; ma=arc_number(g1); n=g1('node_number');
  nodetype=0*ones(1,n); nodetype(1)=2; g1('node_type')=nodetype;
  edgecolor=1*ones(1,ma); edgecolor(t)=11*ones(t); g1('edge_color')=edgecolor;
  edgewidth=1*ones(1,ma); edgewidth(t)=4*ones(t); g1('edge_width')=edgewidth;
  x_message('Minimum weight tree from node 1');
  show_graph(g1);