File: salesman.cat

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (37 lines) | stat: -rw-r--r-- 1,183 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

salesman(1)                    Scilab function                    salesman(1)
NAME
  salesman - solves the travelling salesman problem

CALLING SEQUENCE
  cir = salesman(g,[nstac])

PARAMETERS

  g : graph list

  nstac : integer

  cir : integer row vector

DESCRIPTION
  salesman solves the travelling salesman problem. g is a directed graph;
  nstac is an optional integer which is a given bound for the allowed memory
  size for solving this problem. Its value is 100*n*n by default where n is
  the number of nodes.

EXAMPLE
  ta=[2  1 3 2 2 4 4 5 6 7 8 8 9 10 10 10 10 11 12 13 13 14 15 16 16 17 17];
  he=[1 10 2 5 7 3 2 4 5 8 6 9 7 7 11 13 15 12 13  9 14 11 16 1 17 14 15];
  g=make_graph('foo',0,17,ta,he);
  g('node_x')=[283 163 63 57 164 164 273 271 339 384 504 513 439 623 631 757 642];
  g('node_y')=[59 133 223 318 227 319 221 324 432 141 209 319 428 443 187 151 301];
  g('node_diam')=[1:(g('node_number'))]+20;
  show_graph(g);
  g1=make_graph('foo1',1,17,[ta he],[he ta]);
  m=arc_number(g1);
  g1('edge_length')=5+round(30*rand(1,m));
  cir = salesman(g1);
  ii=find(cir > edge_number(g));
  if(ii <> []) then cir(ii)=cir(ii)-edge_number(g);end;
  show_arcs(cir);