1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
|
odedc(G) Scilab Function odedc(G)
NAME
odedc - discrete/continuous ode solver
CALLING SEQUENCE
yt=odedc(y0,nd,stdel,t0,t,f)
PARAMETERS
y0 : real column vector (initial conditions),y0=[y0c;y0d] where y0d
has nd components.
nd : integer, dimension of y0d
stdel : real vector with one or two entries, stdel=[h, delta] (with
delta=0 as default value).
t0 : real scalar (initial time).
t : real (row) vector, instants where yt is calculated
f : Scilab "external" i.e. function or character string or list
with calling sequence: yp=f(t,yc,yd,flag)
DESCRIPTION
y=odedc([y0c;y0d],nd,[h,delta],t0,t,f) computes the solution of a mixed
discrete/continuous system. The discrete system state yd_k is embedded into
a piecewise constant yd(t) time function as follows: yd(t)= yd_k for t in
[t_k=delay+k*h,t_(k+1)=delay+(k+1)*h[ (with delay=h*delta). The simulated
equations are now:
dyc/dt=f(t,yc(t),yd(t),0) , for t in [t_k,t_(k+1)[
yc(t0)=y0c
and at instants t_k the discrete variable yd is updated by:
yd(t_k+)=f(yc(t_k-),yd(t_k-),1)
Note that, using the definition of yd(t) the last equation gives
yd_k = f (t_k,yc(t_k-),yd(t_(k-1)),1) (yc is time-continuous: yc(t_k-
)=yc(tk))
The calling parameters of f are fixed: ycd=f(t,yc,yd,flag); this function
must return either the derivative of the vector yc if flag=0 or the update
of yd if flag=1.
ycd=dot(yc) must be a vector with same dimension as yc if flag=0 and
ycd=update(yd) must be a vector with same dimension as yd if flag=1
t is a vector of instants where the solution y is computed.
y is the vector y=[y(t(1)),y(t(2)),...]. This function can be called with
the same optional parameters as the ode function (provided nd and stdel are
given in the calling sequence as second and third parameters). It particu-
lar integration flags, tolerances can be set. Optional parameters can be
set by the odeoptions function.
An example for calling an external routine is given in directory
default/fydot2.f External routines can be dynamically linked (see link).
EXAMPLE
//Linear system with switching input
deff('xdu=phis(t,x,u,flag)','if flag==0 then xdu=A*x+B*u; else xdu=1-u;end');
x0=[1;1];A=[-1,2;-2,-1];B=[1;2];u=0;nu=1;stdel=[1,0];u0=0;t=0:0.05:10;
xu=odedc([x0;u0],nu,stdel,0,t,phis);x=xu(1:2,:);u=xu(3,:);
nx=2;
plot2d1('onn',t',x',[1:nx],'161');
plot2d2('onn',t',u',[nx+1:nx+nu],'000');
//Fortran external( see fydot2.f):
norm(xu-odedc([x0;u0],nu,stdel,0,t,'phis'),1)
//Sampled feedback
//
// | xcdot=fc(t,xc,u)
// (system) |
// | y=hc(t,xc)
//
//
// | xd+=fd(xd,y)
// (feedback) |
// | u=hd(t,xd)
//
deff('xcd=f(t,xc,xd,iflag)',...
['if iflag==0 then '
' xcd=fc(t,xc,e(t)-hd(t,xd));'
'else '
' xcd=fd(xd,hc(t,xc));'
'end']);
A=[-10,2,3;4,-10,6;7,8,-10];B=[1;1;1];C=[1,1,1];
Ad=[1/2,1;0,1/20];Bd=[1;1];Cd=[1,1];
deff('st=e(t)','st=sin(3*t)')
deff('xdot=fc(t,x,u)','xdot=A*x+B*u')
deff('y=hc(t,x)','y=C*x')
deff('xp=fd(x,y)','xp=Ad*x + Bd*y')
deff('u=hd(t,x)','u=Cd*x')
h=0.1;t0=0;t=0:0.1:2;
x0c=[0;0;0];x0d=[0;0];nd=2;
xcd=odedc([x0c;x0d],nd,h,t0,t,f);
norm(xcd-odedc([x0c;x0d],nd,h,t0,t,'fcd1')) // Fast calculation (see fydot2.f)
plot2d([t',t',t'],xcd(1:3,:)');
xset("window",2);plot2d2("gnn",[t',t'],xcd(4:5,:)');
xset("window",0);
SEE ALSO
ode, odeoptions, csim, external
|