File: lcmdiag.man

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (38 lines) | stat: -rw-r--r-- 808 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
.TH lcm 8 "April 1993" "Scilab Group" "Scilab Function"
.so ../sci.an 
.SH NAME
lcmdiag - least common multiple diagonal factorization
.SH CALLING SEQUENCE
.nf
[N,D]=lcmdiag(H)
[N,D]=lcmdiag(H,flag)
.fi
.SH PARAMETERS
.TP
H
: rational matrix
.TP
N
: polynomial matrix
.TP
D
: diagonal polynomial matrix
.TP
flag
: character string: \fV'row'\fR or \fV'col'\fr (default)
.SH DESCRIPTION
\fV[N,D]=lcmdiag(H,'row')\fR computes a factorization \fVD*H=N\fR,
i.e.  H=D^(-1)*N  where D is a diagonal matrix with D(k,k)=lcm of 
kth row of H('den').
.LP
\fV[N,D]=lcmdiag(H)\fR or \fV[N,D]=lcmdiag(H,'col)\fR returns
H=N*D^(-1) with diagonal D and D(k,k)=lcm of kth col of H('den')
.SH EXAMPLE 
.nf
s=poly(0,'s');
H=[1/s,(s+2)/s/(s+1)^2;1/(s^2*(s+2)),2/(s+2)];
[N,D]=lcmdiag(H);
N/D-H
.fi
.SH SEE ALSO
lcm, gcd, bezout