File: sfact.man

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (53 lines) | stat: -rw-r--r-- 1,591 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
.TH SFACT G "April 1993" "Scilab Group" "Scilab Function"
.so ../sci.an 
.SH NAME
sfact - discrete time spectral factorization
.SH CALLING SEQUENCE
.nf
F=sfact(P)
.fi
.SH PARAMETERS
.TP
P
: real polynomial matrix
.SH DESCRIPTION
Finds \fVF\fR, a spectral factor of \fVP\fR. \fVP\fR is a 
polynomial matrix such that each root of \fVP\fR has a 
mirror image w.r.t the unit circle. Problem is singular
if a root is on the unit circle.
.LP
.Vb sfact(P) 
returns a polynomial matrix \fVF(z)\fR which is antistable and such that
.LP
\fVP = F(z)* F(1/z) *z^n\fR
.LP
For scalar polynomials a specific algorithm is implemented.
Algorithms are adapted from Kucera's book.
.SH EXAMPLE
.nf
//Simple polynomial example
z=poly(0,'z');
p=(z-1/2)*(2-z)
w=sfact(p);
w*numer(horner(w,1/z))
//matrix example
F1=[z-1/2,z+1/2,z^2+2;1,z,-z;z^3+2*z,z,1/2-z];
P=F1*gtild(F1,'d');  //P is symmetric
F=sfact(P)    
roots(det(P))  
roots(det(gtild(F,'d')))  //The stable roots
roots(det(F))             //The antistable roots
clean(P-F*gtild(F,'d'))
//Example of continuous time use
s=poly(0,'s');
p=-3*(s+(1+%i))*(s+(1-%i))*(s+0.5)*(s-0.5)*(s-(1+%i))*(s-(1-%i));p=real(p);
//p(s) = polynomial in s^2 , looks for stable f such that p=f(s)*f(-s) 
w=horner(p,(1-s)/(1+s));  // bilinear transform w=p((1-s)/(1+s))
wn=numer(w);              //take the numerator
fn=sfact(wn);f=numer(horner(fn,(1-s)/(s+1))); //Factor and back transform
f=f/sqrt(horner(f*gtild(f,'c'),0));f=f*sqrt(horner(p,0));      //normalization
roots(f)    //f is stable
clean(f*gtild(f,'c')-p)    //f(s)*f(-s) is p(s) 
.fi
.SH SEE ALSO
gtild, fspecg