File: sylm.man

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (36 lines) | stat: -rw-r--r-- 796 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
.TH sylmX 1 "April 1993" "Scilab Group" "Scilab Function"
.so ../sci.an 
.SH NAME
sylm - Sylvester matrix
.SH CALLING SEQUENCE
.nf
[S]=sylm(a,b)
.fi
.SH PARAMETERS
.TP
a,b
: two polynomials
.TP
S
: matrix
.SH DESCRIPTION
\fVsylm(a,b)\fR gives the Sylvester matrix associated to polynomials
\fVa\fR and \fVb\fR, i.e. the matrix \fVS\fR such that:
.LP
\fVcoeff( a*x + b*y )' = S * [coeff(x)';coeff(y)']\fR.
.LP
Dimension of \fVS\fR is equal to \fVdegree(a)+degree(b)\fR.
.LP
If \fVa\fR and \fVb\fR are coprime polynomials then
.LP
\fVrank(sylm(a,b))=degree(a)+degree(b))\fR and the instructions
.nf
  u = sylm(a,b) \\ eye(na+nb,1)
  x = poly(u(1:nb),'z','coeff')
  y = poly(u(nb+1:na+nb),'z','coeff')
.fi
compute Bezout factors \fVx\fR and \fVy\fR of minimal degree 
such that \fVa*x+b*y = 1\fR