File: h_inf.cat

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (52 lines) | stat: -rw-r--r-- 1,770 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

H_inf(1)                       Scilab Function                       H_inf(1)
NAME
  h_inf - H-infinity (central) controller

CALLING SEQUENCE
  [Sk,ro]=h_inf(P,r,romin,romax,nmax)
  [Sk,rk,ro]=h_inf(P,r,romin,romax,nmax)

PARAMETERS

  P              : syslin list : continuous-time linear system (``augmented''
                 plant given in state-space form or in transfer form)

  r              : size of the P22 plant i.e. 2-vector [#outputs,#inputs]

  romin,romax    : a priori bounds on ro with ro=1/gama^2; (romin=0  usually)

  nmax           : integer, maximum number of iterations in the gama-
                 iteration.

DESCRIPTION
  h_inf computes H-infinity optimal controller for the continuous-time plant
  P.

  The partition of P into four sub-plants is given through the 2-vector r
  which is the size of the 22 part of P.

  P is given in state-space e.g. P=syslin('c',A,B,C,D) with A,B,C,D = con-
  stant matrices or P=syslin('c',H) with H a transfer matrix.

  [Sk,ro]=H_inf(P,r,romin,romax,nmax) returns ro in [romin,romax] and the
  central controller Sk in the same representation as P.

  (All calculations are made in state-space, i.e conversion to state-space is
  done by the function, if necessary).

  Invoked with three LHS parameters, [Sk,rk,ro]=H_inf(P,r,romin,romax,nmax)
  returns ro and the Parameterization of all stabilizing controllers:

  a stabilizing controller K is obtained by K=lft(Sk,r,PHI) where PHI is a
  linear system with dimensions r' and satisfy:

  H_norm(PHI) < gamma.  rk (=r) is the size of the Sk22 block and ro =
  1/gama^2 after nmax iterations.

  Algorithm is adapted from Safonov-Limebeer. Note that P is assumed to be a
  continuous-time plant.
SEE ALSO
  gamitg, ccontrg, leqr
AUTHOR
  F.D. (1990)