File: h_inf.man

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (62 lines) | stat: -rw-r--r-- 1,911 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
.TH H_inf 1 "April 1993" "Scilab Group" "Scilab Function"
.so ../sci.an
.SH NAME
h_inf - H-infinity (central) controller
.SH CALLING SEQUENCE
.nf
[Sk,ro]=h_inf(P,r,romin,romax,nmax)
[Sk,rk,ro]=h_inf(P,r,romin,romax,nmax)
.fi
.SH PARAMETERS
.TP 15
P 
: \fVsyslin\fR list : continuous-time linear system (``augmented'' plant given in state-space form 
or in transfer form)
.TP
r 
: size of the \fVP22\fR plant i.e. 2-vector [#outputs,#inputs]
.TP
romin,romax 
: a priori bounds on \fVro\fR with \fVro=1/gama^2\fR; (\fVromin=0\fR  usually)
.TP
nmax 
: integer, maximum number of iterations in the gama-iteration.
.SH DESCRIPTION
\fVh_inf\fR computes H-infinity optimal controller for the 
continuous-time plant \fVP\fR.
.LP
The partition of \fVP\fR into four sub-plants is given through
the 2-vector \fVr\fR which is the size of the \fV22\fR part of \fVP\fR.
.LP
\fVP\fR is given in state-space 
e.g. \fVP=syslin('c',A,B,C,D)\fR with \fVA,B,C,D\fR = constant matrices
or \fVP=syslin('c',H)\fR with \fVH\fR a transfer matrix.
.LP

.Vb [Sk,ro]=H_inf(P,r,romin,romax,nmax)
returns \fVro\fR in \fV[romin,romax]\fR and the central controller 
\fVSk\fR in the same representation as \fVP\fR.
.LP
(All calculations are made in state-space, i.e conversion to state-space
is done by the function, if necessary).
.LP

Invoked with three LHS parameters,
.Vb [Sk,rk,ro]=H_inf(P,r,romin,romax,nmax) 
returns \fVro\fR and the Parameterization of all stabilizing 
controllers:
.LP
a stabilizing controller \fVK\fR is obtained by 
\fVK=lft(Sk,r,PHI)\fR where \fVPHI\fR is a linear system with 
dimensions \fVr'\fR and satisfy:
.LP 
\fVH_norm(PHI) < gamma\fR.
\fVrk (=r)\fR is the size of the \fVSk22\fR block and \fVro = 1/gama^2\fR 
after \fVnmax\fR iterations.
.LP
Algorithm is adapted from Safonov-Limebeer. Note that \fVP\fR is assumed to be 
a continuous-time plant.
.SH SEE ALSO
gamitg, ccontrg, leqr
.SH AUTHOR
F.D. (1990)