File: lft.man

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (68 lines) | stat: -rw-r--r-- 1,916 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
.TH lft 5 "April 1993" "Scilab Group" "Scilab Function"
.so ../sci.an
.SH NAME
lft - linear fractional transformation
.SH CALLING SEQUENCE
.nf
[P1]=LFT(P,K)
[P1]=LFT(P,r,K)
[P1,r1]=LFT(P,r,P#,r#)
.fi
.SH PARAMETERS
.TP
P
: linear system (\fVsyslin\fR list), the ``augmented'' plant, implicitly
partitioned into four blocks (two input ports and two output ports).
.TP
K
: linear system (\fVsyslin\fR list), the controller (possibly
an ordinary gain).
.TP
r
: 1x2 row vector, dimension of \fVP22\fR
.TP
P#
: linear system (\fVsyslin\fR list), implicitly
partitioned into four blocks (two input ports and two output ports).
.TP
r#
: 1x2 row vector, dimension of \fVP#22\fR
.SH DESCRIPTION
Linear fractional transform between two standard plants
\fVP\fR and \fVP#\fR in state space form or in transfer form 
(\fVsyslin\fR lists).
.LP
\fVr= size(P22) r#=size(P22#)\fR
.LP
\fVLFT(P,r, K)\fR is the linear fractional transform between \fVP\fR and
a controller \fVK\fR (\fVK\fR may be a gain or a controller in
state space form or in transfer form);
.LP
\fVLFT(P,K)\fR is \fVLFT(P,r,K)\fR with \fVr\fR=size of \fVK\fR transpose;
.LP
\fVP1= P11+P12*K* (I-P22*K)^-1 *P21\fR
.LP
.Vb [P1,r1]=LFT(P,r,P#,r#)
returns the generalized (2 ports) lft of \fVP\fR and \fVP#\fR.
.LP
\fVP1\fR is the pair two-port interconnected plant and the partition
of \fVP1\fR into 4 blocks in given by \fVr1\fR which is the dimension
of the \fV22\fR block of \fVP1\fR.
.LP
\fVP\fR and \fVR\fR can be PSSDs i.e. may admit a polynomial \fVD\fR matrix.
.SH EXAMPLE
.nf
s=poly(0,'s');
P=[1/s, 1/(s+1); 1/(s+2),2/s]; K= 1/(s-1);
lft(P,K)
lft(P,[1,1],K)
P(1,1)+P(1,2)*K*inv(1-P(2,2)*K)*P(2,1)   //Numerically dangerous!
ss2tf(lft(tf2ss(P),tf2ss(K)))
lft(P,-1)
f=[0,0;0,1];w=P/.f; w(1,1)
//Improper plant (PID control)
W=[1,1;1,1/(s^2+0.1*s)];K=1+1/s+s
lft(W,[1,1],K); ss2tf(lft(tf2ss(W),[1,1],tf2ss(K)))
.fi
.SH SEE ALSO
sensi, augment, feedback, sysdiag