File: ric_desc.man

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (62 lines) | stat: -rw-r--r-- 1,442 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
.TH ric_desc 1 "April 1993" "Scilab Group" "Scilab Function"
.so ../sci.an
.SH NAME
ric_desc - Riccati equation
.SH CALLING SEQUENCE
.nf
X=ric_desc(H [,E))
[X1,X2,zero]=ric_desc(H [,E])
.fi
.SH PARAMETERS
.TP 12
H,E
: real square matrices
.TP
X1,X2
: real square matrices
.TP
zero
: real number
.SH DESCRIPTION
Riccati solver with hamiltonian matrices as inputs.
.LP
In the continuous time case calling sequence is (one input):
.Vb ric_descr(H)
.LP
Riccati equation is: 
.nf
  (Ec)   A'*X + X*A + X*R*X -Q = 0.
.fi
Defining the hamiltonian matrix \fVH\fR by:
.nf
 H = [A  R;
      Q -A']
.fi
with the calling sequence \fV[X1,X2,zero]=ric_descr(H)\fR, the 
solution \fVX\fR is given by \fVX=X1/X2\fR.
.LP
\fVzero\fR = L1 norm of rhs of (\fVEc\fR)
.LP
The solution \fVX\fR is also given by \fVX=riccati(A,Q,R,'c'))\fR
.LP
In the discrete-time case calling sequence is (two inputs):
.Vb ric_descr(H,E) 
.LP
The Riccati equation is:
.nf
   (Ed)  A'*X*A-(A'*X*B*(R+B'*X*B)^-1)*(B'*X*A)+C-X = 0.
.fi
Defining \fVG=B/R*B'\fR and the hamiltonian pencil \fV(E,H)\fR by: 
.nf
      E=[eye(n,n),G;               H=[A, 0*ones(n,n);
         0*ones(n,n),A']             -C, eye(n,n)];
.fi
with the calling sequence \fV[X1,X2,err]=ric_descr(H,E)\fR, the 
solution \fVX\fR is given by \fVX=X1/X2\fR.
.LP
\fVzero\fR= L1 norm of rhs of (\fVEd\fR)
.LP
The solution \fVX\fR is also given by \fVX=riccati(A,G,C,'d')\fR  
with \fVG=B/R*B'\fR
.SH SEE ALSO
riccati