File: hank.cat

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (50 lines) | stat: -rw-r--r-- 1,263 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

hank(1)                        Scilab Function                        hank(1)
NAME
  hank - covariance to hankel matrix

CALLING SEQUENCE
  [hk]=hank(m,n,cov)

PARAMETERS

  m    : number of bloc-rows

  n    : number of bloc-columns

  cov  : sequence of covariances; it must be given as :[R0 R1 R2...Rk]

  hk   : computed hankel matrix

DESCRIPTION
  this function builds the hankel matrix of size (m*d,n*d) from the covari-
  ance sequence of a vector process

AUTHOR
  G. Le Vey

EXAMPLE
  //Example of how to use the hank macro for
  //building a Hankel matrix from multidimensional
  //data (covariance or Markov parameters e.g.)
  //
  //This is used e.g. in the solution of normal equations
  //by classical identification methods (Instrumental Variables e.g.)
  //
  //1)let's generate the multidimensional data under the form :
  //  C=[c_0 c_1 c_2 .... c_n]
  //where each bloc c_k is a d-dimensional matrix (e.g. the k-th correlation
  //of a d-dimensional stochastic process X(t) [c_k = E(X(t) X'(t+k)], '
  //being the transposition in scilab)
  //
  //we take here d=2 and n=64
  //
  c=rand(2,2*64)
  //
  //generate the hankel matrix H (with 4 bloc-rows and 5 bloc-columns)
  //from the data in c
  //
  H=hank(4,5,c);
  //
SEE ALSO
  toeplitz