1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
|
.TH hank 1 "April 1993" "Scilab Group" "Scilab Function"
.so ../sci.an
.SH NAME
hank - covariance to hankel matrix
.SH CALLING SEQUENCE
.nf
[hk]=hank(m,n,cov)
.fi
.SH PARAMETERS
.TP
m
: number of bloc-rows
.TP
n
: number of bloc-columns
.TP
cov
: sequence of covariances; it must be given as :[R0 R1 R2...Rk]
.TP
hk
: computed hankel matrix
.SH DESCRIPTION
this function builds the hankel matrix of size \fV(m*d,n*d)\fR
from the covariance sequence of a vector process
.SH AUTHOR
G. Le Vey
.SH EXAMPLE
.nf
//Example of how to use the hank macro for
//building a Hankel matrix from multidimensional
//data (covariance or Markov parameters e.g.)
//
//This is used e.g. in the solution of normal equations
//by classical identification methods (Instrumental Variables e.g.)
//
//1)let's generate the multidimensional data under the form :
// C=[c_0 c_1 c_2 .... c_n]
//where each bloc c_k is a d-dimensional matrix (e.g. the k-th correlation
//of a d-dimensional stochastic process X(t) [c_k = E(X(t) X'(t+k)], '
//being the transposition in scilab)
//
//we take here d=2 and n=64
//
c=rand(2,2*64)
//
//generate the hankel matrix H (with 4 bloc-rows and 5 bloc-columns)
//from the data in c
//
H=hank(4,5,c);
//
.fi
.SH SEE ALSO
toeplitz
|