File: hank.man

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (53 lines) | stat: -rw-r--r-- 1,242 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
.TH hank 1 "April 1993" "Scilab Group" "Scilab Function"
.so ../sci.an 
.SH NAME
hank - covariance to hankel matrix
.SH CALLING SEQUENCE
.nf
[hk]=hank(m,n,cov)
.fi
.SH PARAMETERS
.TP
m
: number of bloc-rows
.TP
n
: number of bloc-columns
.TP
cov
: sequence of covariances; it must be given as :[R0 R1 R2...Rk]
.TP
hk
: computed hankel matrix
.SH DESCRIPTION
this function builds the hankel matrix of size \fV(m*d,n*d)\fR
from the covariance sequence of a vector process
.SH AUTHOR
G. Le Vey
.SH EXAMPLE
.nf
//Example of how to use the hank macro for 
//building a Hankel matrix from multidimensional 
//data (covariance or Markov parameters e.g.)
//
//This is used e.g. in the solution of normal equations
//by classical identification methods (Instrumental Variables e.g.)
//
//1)let's generate the multidimensional data under the form :
//  C=[c_0 c_1 c_2 .... c_n]
//where each bloc c_k is a d-dimensional matrix (e.g. the k-th correlation 
//of a d-dimensional stochastic process X(t) [c_k = E(X(t) X'(t+k)], ' 
//being the transposition in scilab)
//
//we take here d=2 and n=64
//
c=rand(2,2*64)
//
//generate the hankel matrix H (with 4 bloc-rows and 5 bloc-columns)
//from the data in c
//
H=hank(4,5,c);
//
.fi
.SH SEE ALSO
toeplitz