File: lattn.man

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (65 lines) | stat: -rw-r--r-- 1,935 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
.TH lattn 1 "April 1993" "Scilab Group" "Scilab Function"
.so ../sci.an
.SH NAME
lattn - recursive solution of normal equations
.SH CALLING SEQUENCE
.nf
[la,lb]=lattn(n,p,cov)
.fi
.SH PARAMETERS
.TP
n
: maximum order of the filter
.TP
p
: fixed dimension of the MA part. If \fVp= -1\fR,
the algorithm reduces to the classical Levinson recursions.
.TP
cov
: matrix containing the \fVRk\fR's (\fVd*d\fR matrices for
a d-dimensional process).It must be given the
following way
.IG
.nf
                       |  R0 |
                       |  R1 |
                   cov=|  R2 |
                       |  .  |
                       |  .  |
                       |Rnlag|
.fi
.FI
.LA $$ cov = \left[ \matrix{ R_0 \cr R_1 \cr R_2\cr
.LA \vdots \cr R_{nlag}}
.LA  \right] $$
.TP
la
: list-type variable, giving the successively calculated
polynomials (degree 1 to degree n),with coefficients Ak
.SH DESCRIPTION
solves recursively on \fVn\fR (\fVp\fR being fixed)
the following system (normal equations), i.e. identifies
the AR part (poles) of a vector ARMA(n,p) process
.IG
.nf
                       |Rp+1 Rp+2 . . . . . Rp+n  |
                       |Rp   Rp+1 . . . . . Rp+n-1|
                       | .   Rp   . . . . .  .    |
                       |                          |
   |I -A1 -A2 . . .-An|| .    .   . . . . .  .    |=0
                       | .    .   . . . . .  .    |
                       | .    .   . . . . .  .    |
                       | .    .   . . . . . Rp+1  |
                       |Rp+1-n.   . . . . . Rp    |
.fi
.FI
.LA $$ \left( \matrix{ I & -A_1 & -A_2 & \ldots & -A_n
.LA         } \right)
.LA  \left( \matrix{ R_{p+1} & R_{p+2} & \ldots & R_{p+n} \cr
.LA		R_p & R_{p+1} & \ldots & R_{p+n-1} \cr
.LA		\vdots & \vdots & \ldots & \vdots \cr
.LA		R_{p+1-n} & R_{p+2-n} & \ldots & R_{p} \cr
.LA	   } \right) = 0	$$
where {\fVRk;k=1,nlag\fR} is the sequence of empirical covariances
.SH AUTHOR
G. Le V.