File: systems.man

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (125 lines) | stat: -rw-r--r-- 2,687 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
.TH systems 1 "April 1993" "Scilab Group" "Scilab Function"
.so ../sci.an
.SH NAME
systems  - a collection of dynamical system 
.SH CALLING SEQUENCE
.nf
[]=systems()
.fi
.SH DESCRIPTION
A call to this function will load into Scilab a set of macros which
describes dynamical systems. Their parameters can be initiated by 
calling the routine tdinit().
.SH BIOREACT
.nf
[ydot]=biorecat(t,x)
.fi
a bioreactor model, 
.TP 
x(1)
is the biomass concentration
.TP
x(2)
is the sugar concentration
.nf
                    xdot(1)=mu_td(x(2))*x(1)- debit*x(1);
                    xdot(2)=-k*mu_td(x(2))*x(1)-debit*x(2)+debit*x2in;
.fi
where mu_td is given by 
.nf
                    mu_td(x)=x/(1+x);
.fi
.SH COMPET
.nf
[xdot]=compet(t,x [,u])
.fi
a competition model. \fVx(1),x(2)\fR stands for two populations which 
grows on a same resource. \fV1/u\fR is the level of that resource (
1 is the default value).
.nf 
xdot=0*ones(2,1);
xdot(1) = ppr*x(1)*(1-x(1)/ppk) - u*ppa*x(1)*x(2) ,
xdot(2) = pps*x(2)*(1-x(2)/ppl) - u*ppb*x(1)*x(2) ,
.fi
.IP "The macro \fV[xe]=equilcom(ue)\fR"
computes an equilibrium point of the competition model and a fixed 
level of the resource ue ( default value is 1)
.IP "The macro \fV[f,g,h,linsy]=lincomp([ue])\fR"
gives the linearisation of the competition model ( with output y=x)
around the equilibrium point xe=equilcom(ue).
This macro returns [f,g,h] the three matrices of the linearised system.
and linsy which is a Scilab macro [ydot]=linsy(t,x) which computes the 
dynamics of the linearised system
.SH CYCLlIM
.nf
[xdot]=cycllim(t,x)
.fi
a model with a limit cycle 
.nf
  xdot=a*x+qeps(1-||x||**2)x
.fi
.SH LINEAR
.nf
[xdot]=linear(t,x)
.fi
a linear system 
.SH BLINPER
.nf
[xdot]=linper(t,x)
.fi
a linear system with quadratic perturbations.
.SH POP
.nf
[xdot]=pop(t,x)
.fi
a fish population model
.nf
xdot= 10*x*(1-x/K)- peche(t)*x
.fi
.SH PROIE
a Predator prey model with external insecticide.
.nf
[xdot]=p_p(t,x,[u]
.fi 
.TP
x(1) 
The prey ( that we want to kill ) 
.TP
x(2) 
the predator ( that we want to preserve ) 
.TP
u
mortality rate due to insecticide which 
destroys both prey and predator
( default value u=0)
.nf
xdot(1) = ppr*x(1)*(1-x(1)/ppk) - ppa*x(1)*x(2) - u*x(1);
xdot(2) = -ppm*x(2)             + ppb*x(1)*x(2) - u*x(2);
.fi

The macro \fV[xe]=equilpp([ue])\fR computes the equilibrium point of
the \fVp_p\fR system for the value \fVue\fR of the command. The
default value for \fVue\fR is 0.
.nf 
                    xe(1) =  (ppm+ue)/ppb;
                    xe(2) =  (ppr*(1-xe(1)/ppk)-ue)/ppa;
.fi
.SH LINCOM
.nf 
[xdot]=lincom(t,x,k)
.fi
linear system with a feedback 
.nf
	xdot= a*x +b*(-k*x)
.fi
.SH SEE ALSO
tdinit