1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
  
     | 
    
            SUBROUTINE DSYR2 ( UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA )
*     .. Scalar Arguments ..
      DOUBLE PRECISION   ALPHA
      INTEGER            INCX, INCY, LDA, N
      CHARACTER*1        UPLO
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), X( * ), Y( * )
*     ..
*
*  Purpose
*  =======
*
*  DSYR2  performs the symmetric rank 2 operation
*
*     A := alpha*x*y' + alpha*y*x' + A,
*
*  where alpha is a scalar, x and y are n element vectors and A is an n
*  by n symmetric matrix.
*
*  Parameters
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the upper or lower
*           triangular part of the array A is to be referenced as
*           follows:
*
*              UPLO = 'U' or 'u'   Only the upper triangular part of A
*                                  is to be referenced.
*
*              UPLO = 'L' or 'l'   Only the lower triangular part of A
*                                  is to be referenced.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the order of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - DOUBLE PRECISION.
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  X      - DOUBLE PRECISION array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCX ) ).
*           Before entry, the incremented array X must contain the n
*           element vector x.
*           Unchanged on exit.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*  Y      - DOUBLE PRECISION array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCY ) ).
*           Before entry, the incremented array Y must contain the n
*           element vector y.
*           Unchanged on exit.
*
*  INCY   - INTEGER.
*           On entry, INCY specifies the increment for the elements of
*           Y. INCY must not be zero.
*           Unchanged on exit.
*
*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
*           Before entry with  UPLO = 'U' or 'u', the leading n by n
*           upper triangular part of the array A must contain the upper
*           triangular part of the symmetric matrix and the strictly
*           lower triangular part of A is not referenced. On exit, the
*           upper triangular part of the array A is overwritten by the
*           upper triangular part of the updated matrix.
*           Before entry with UPLO = 'L' or 'l', the leading n by n
*           lower triangular part of the array A must contain the lower
*           triangular part of the symmetric matrix and the strictly
*           upper triangular part of A is not referenced. On exit, the
*           lower triangular part of the array A is overwritten by the
*           lower triangular part of the updated matrix.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program. LDA must be at least
*           max( 1, n ).
*           Unchanged on exit.
*
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO
      PARAMETER        ( ZERO = 0.0D+0 )
*     .. Local Scalars ..
      DOUBLE PRECISION   TEMP1, TEMP2
      INTEGER            I, INFO, IX, IY, J, JX, JY, KX, KY
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF     ( .NOT.LSAME( UPLO, 'U' ).AND.
     $         .NOT.LSAME( UPLO, 'L' )      )THEN
         INFO = 1
      ELSE IF( N.LT.0 )THEN
         INFO = 2
      ELSE IF( INCX.EQ.0 )THEN
         INFO = 5
      ELSE IF( INCY.EQ.0 )THEN
         INFO = 7
      ELSE IF( LDA.LT.MAX( 1, N ) )THEN
         INFO = 9
      END IF
      IF( INFO.NE.0 )THEN
         CALL XERBLA( 'DSYR2 ', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( ( N.EQ.0 ).OR.( ALPHA.EQ.ZERO ) )
     $   RETURN
*
*     Set up the start points in X and Y if the increments are not both
*     unity.
*
      IF( ( INCX.NE.1 ).OR.( INCY.NE.1 ) )THEN
         IF( INCX.GT.0 )THEN
            KX = 1
         ELSE
            KX = 1 - ( N - 1 )*INCX
         END IF
         IF( INCY.GT.0 )THEN
            KY = 1
         ELSE
            KY = 1 - ( N - 1 )*INCY
         END IF
         JX = KX
         JY = KY
      END IF
*
*     Start the operations. In this version the elements of A are
*     accessed sequentially with one pass through the triangular part
*     of A.
*
      IF( LSAME( UPLO, 'U' ) )THEN
*
*        Form  A  when A is stored in the upper triangle.
*
         IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
            DO 20, J = 1, N
               IF( ( X( J ).NE.ZERO ).OR.( Y( J ).NE.ZERO ) )THEN
                  TEMP1 = ALPHA*Y( J )
                  TEMP2 = ALPHA*X( J )
                  DO 10, I = 1, J
                     A( I, J ) = A( I, J ) + X( I )*TEMP1 + Y( I )*TEMP2
   10             CONTINUE
               END IF
   20       CONTINUE
         ELSE
            DO 40, J = 1, N
               IF( ( X( JX ).NE.ZERO ).OR.( Y( JY ).NE.ZERO ) )THEN
                  TEMP1 = ALPHA*Y( JY )
                  TEMP2 = ALPHA*X( JX )
                  IX    = KX
                  IY    = KY
                  DO 30, I = 1, J
                     A( I, J ) = A( I, J ) + X( IX )*TEMP1
     $                                     + Y( IY )*TEMP2
                     IX        = IX        + INCX
                     IY        = IY        + INCY
   30             CONTINUE
               END IF
               JX = JX + INCX
               JY = JY + INCY
   40       CONTINUE
         END IF
      ELSE
*
*        Form  A  when A is stored in the lower triangle.
*
         IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
            DO 60, J = 1, N
               IF( ( X( J ).NE.ZERO ).OR.( Y( J ).NE.ZERO ) )THEN
                  TEMP1 = ALPHA*Y( J )
                  TEMP2 = ALPHA*X( J )
                  DO 50, I = J, N
                     A( I, J ) = A( I, J ) + X( I )*TEMP1 + Y( I )*TEMP2
   50             CONTINUE
               END IF
   60       CONTINUE
         ELSE
            DO 80, J = 1, N
               IF( ( X( JX ).NE.ZERO ).OR.( Y( JY ).NE.ZERO ) )THEN
                  TEMP1 = ALPHA*Y( JY )
                  TEMP2 = ALPHA*X( JX )
                  IX    = JX
                  IY    = JY
                  DO 70, I = J, N
                     A( I, J ) = A( I, J ) + X( IX )*TEMP1
     $                                     + Y( IY )*TEMP2
                     IX        = IX        + INCX
                     IY        = IY        + INCY
   70             CONTINUE
               END IF
               JX = JX + INCX
               JY = JY + INCY
   80       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of DSYR2 .
*
      END
 
     |