1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
|
subroutine wwpow1(n,vr,vi,iv,pr,pi,ip,rr,ri,ir,ierr)
c!purpose
c computes V^P with V and P complex vectors
c!calling sequence
c subroutine wwpow1(n,vr,vi,iv,pr,pi,ip,rr,ri,ir,ierr)
c integer n,iv,ip,ir,ierr
c double precision vr(*),vi(*),pr(*),pi(*),rr(*),ri(*)
c
c n : number of elements of V and P vectors
c vr : array containing real part of V elements
c real(V(i))=vr(1+(i-1)*iv)
c vi : array containing imaginary part of V elements
c imag(V(i))=vi(1+(i-1)*iv)
c iv : increment between two V elements in v (may be 0)
c pr : array containing real part of P elements
c real(P(i))=pr(1+(i-1)*iv)
c pi : array containing imaginary part of P elements
c imag(P(i))=pi(1+(i-1)*iv)
c ip : increment between two P elements in p (may be 0)
c rr : array containing real part of the results vector R:
c real(R(i))=rr(1+(i-1)*ir)
c ri : array containing imaginary part of the results vector R:
c imag(R(i))=ri(1+(i-1)*ir)
c ir : increment between two R elements in rr and ri
c ierr : error flag
c ierr=0 if ok
c ierr=1 if 0**0
c ierr=2 if 0**k with k<0
c!origin
c Serge Steer INRIA 1996
c!
c Copyright INRIA
integer n,iv,ierr
double precision vr(*),vi(*),pr(*),pi(*),rr(*),ri(*)
c
ierr=0
iscmpl=0
c
ii=1
iip=1
iir=1
do 20 i=1,n
call wwpowe(vr(ii),vi(ii),pr(iip),pi(iip),rr(iir),ri(iir),ierr)
c if(ierr.ne.0) return
ii=ii+iv
iip=iip+ip
iir=iir+ir
20 continue
c
return
end
|