1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
  
     | 
    
            subroutine dgbfa(abd,lda,n,ml,mu,ipvt,info)
      integer lda,n,ml,mu,ipvt(*),info
      double precision abd(lda,*)
c!purpose
c
c     dgbfa factors a double precision band matrix by elimination.
c
c     dgbfa is usually called by dgbco, but it can be called
c     directly with a saving in time if  rcond  is not needed.
c
c!calling sequence
c
c      subroutine dgbfa(abd,lda,n,ml,mu,ipvt,info)
c     on entry
c
c        abd     double precision(lda, n)
c                contains the matrix in band storage.  the columns
c                of the matrix are stored in the columns of  abd  and
c                the diagonals of the matrix are stored in rows
c                ml+1 through 2*ml+mu+1 of  abd .
c                see the comments below for details.
c
c        lda     integer
c                the leading dimension of the array  abd .
c                lda must be .ge. 2*ml + mu + 1 .
c
c        n       integer
c                the order of the original matrix.
c
c        ml      integer
c                number of diagonals below the main diagonal.
c                0 .le. ml .lt. n .
c
c        mu      integer
c                number of diagonals above the main diagonal.
c                0 .le. mu .lt. n .
c                more efficient if  ml .le. mu .
c     on return
c
c        abd     an upper triangular matrix in band storage and
c                the multipliers which were used to obtain it.
c                the factorization can be written  a = l*u  where
c                l  is a product of permutation and unit lower
c                triangular matrices and  u  is upper triangular.
c
c        ipvt    integer(n)
c                an integer vector of pivot indices.
c
c        info    integer
c                = 0  normal value.
c                = k  if  u(k,k) .eq. 0.0 .  this is not an error
c                     condition for this subroutine, but it does
c                     indicate that dgbsl will divide by zero if
c                     called.  use  rcond  in dgbco for a reliable
c                     indication of singularity.
c
c     band storage
c
c           if  a  is a band matrix, the following program segment
c           will set up the input.
c
c                   ml = (band width below the diagonal)
c                   mu = (band width above the diagonal)
c                   m = ml + mu + 1
c                   do 20 j = 1, n
c                      i1 = max(1, j-mu)
c                      i2 = min(n, j+ml)
c                      do 10 i = i1, i2
c                         k = i - j + m
c                         abd(k,j) = a(i,j)
c                10    continue
c                20 continue
c
c           this uses rows  ml+1  through  2*ml+mu+1  of  abd .
c           in addition, the first  ml  rows in  abd  are used for
c           elements generated during the triangularization.
c           the total number of rows needed in  abd  is  2*ml+mu+1 .
c           the  ml+mu by ml+mu  upper left triangle and the
c           ml by ml  lower right triangle are not referenced.
c
c!originator
c     linpack. this version dated 08/14/78 .
c     cleve moler, university of new mexico, argonne national lab.
c
c!auxiliary routines
c
c     blas daxpy,dscal,idamax
c     fortran max,min
c
c!
c     internal variables
c
      double precision t
      integer i,idamax,i0,j,ju,jz,j0,j1,k,kp1,l,lm,m,mm,nm1
c
c
      m = ml + mu + 1
      info = 0
c
c     zero initial fill-in columns
c
      j0 = mu + 2
      j1 = min(n,m) - 1
      if (j1 .lt. j0) go to 30
      do 20 jz = j0, j1
         i0 = m + 1 - jz
         do 10 i = i0, ml
            abd(i,jz) = 0.0d+0
   10    continue
   20 continue
   30 continue
      jz = j1
      ju = 0
c
c     gaussian elimination with partial pivoting
c
      nm1 = n - 1
      if (nm1 .lt. 1) go to 130
      do 120 k = 1, nm1
         kp1 = k + 1
c
c        zero next fill-in column
c
         jz = jz + 1
         if (jz .gt. n) go to 50
         if (ml .lt. 1) go to 50
            do 40 i = 1, ml
               abd(i,jz) = 0.0d+0
   40       continue
   50    continue
c
c        find l = pivot index
c
         lm = min(ml,n-k)
         l = idamax(lm+1,abd(m,k),1) + m - 1
         ipvt(k) = l + k - m
c
c        zero pivot implies this column already triangularized
c
         if (abd(l,k) .eq. 0.0d+0) go to 100
c
c           interchange if necessary
c
            if (l .eq. m) go to 60
               t = abd(l,k)
               abd(l,k) = abd(m,k)
               abd(m,k) = t
   60       continue
c
c           compute multipliers
c
            t = -1.0d+0/abd(m,k)
            call dscal(lm,t,abd(m+1,k),1)
c
c           row elimination with column indexing
c
            ju = min(max(ju,mu+ipvt(k)),n)
            mm = m
            if (ju .lt. kp1) go to 90
            do 80 j = kp1, ju
               l = l - 1
               mm = mm - 1
               t = abd(l,j)
               if (l .eq. mm) go to 70
                  abd(l,j) = abd(mm,j)
                  abd(mm,j) = t
   70          continue
               call daxpy(lm,t,abd(m+1,k),1,abd(mm+1,j),1)
   80       continue
   90       continue
         go to 110
  100    continue
            info = k
  110    continue
  120 continue
  130 continue
      ipvt(n) = n
      if (abd(m,n) .eq. 0.0d+0) info = n
      return
      end
 
     |