File: imtql3.f

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (174 lines) | stat: -rw-r--r-- 5,173 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
      subroutine imtql3(nm,n,d,e,z,ierr,job)
c
      integer i,j,k,l,m,n,ii,nm,mml,ierr
      double precision d(n),e(n),z(nm,n)
      double precision b,c,f,g,p,r,s,machep
      double precision dlamch
c
c!purpose
c     this subroutine finds the eigenvalues and eigenvectors
c     of a symmetric tridiagonal matrix by the implicit ql method.
c     the eigenvectors of a full symmetric matrix can also
c     be found if  tred2  has been used to reduce this
c     full matrix to tridiagonal form.
c
c!calling sequence
c     subroutine imtql3(nm,n,d,e,z,ierr)
c
c     integer i,j,k,l,m,n,ii,nm,mml,ierr
c     real*8 d(n),e(n),z(nm,n)
c     real*8 b,c,f,g,p,r,s,machep
c
c     on input:
c
c        nm must be set to the row dimension of two-dimensional
c          array parameters as declared in the calling program
c          dimension statement;
c
c        n is the order of the matrix;
c
c        d contains the diagonal elements of the input matrix;
c
c        e contains the subdiagonal elements of the input matrix
c          in its last n-1 positions.  e(1) is arbitrary;
c
c        z contains the transformation matrix produced in the
c          reduction by  tred2, if performed.  if the eigenvectors
c          of the tridiagonal matrix are desired, z must contain
c          the identity matrix.
c        job specifies if eigenvectors are desired
c            job=1 eigenvectors are calculated
c            job=0 no eigenvectors
c
c      on output:
c
c        d contains the eigenvalues in ascending order.  if an
c          error exit is made, the eigenvalues are correct but
c          unordered for indices 1,2,...,ierr-1;
c
c        e has been destroyed;
c
c        z contains orthonormal eigenvectors of the symmetric
c          tridiagonal (or full) matrix.  if an error exit is made,
c          z contains the eigenvectors associated with the stored
c          eigenvalues;
c
c        ierr is set to
c          zero       for normal return,
c          j          if the j-th eigenvalue has not been
c                     determined after 30 iterations.
c
c!originator
c     this subroutine is a translation of the algol procedure imtql3,
c     num. math. 12, 377-383(1968) by martin and wilkinson,
c     as modified in num. math. 15, 450(1970) by dubrulle.
c     handbook for auto. comp., vol.ii-linear algebra, 241-248(1971).
c
c     questions and comments should be directed to b. s. garbow,
c     applied mathematics division, argonne national laboratory
c
c!
c     ------------------------------------------------------------------
c
c     :::::::::: machep is a machine dependent parameter specifying
c                the relative precision of floating point arithmetic.
      machep=dlamch('p')
c
      ierr = 0
      if (n .eq. 1) go to 1001
c
      do 100 i = 2, n
  100 e(i-1) = e(i)
c
      e(n) = 0.0d+0
c
      do 240 l = 1, n
         j = 0
c     :::::::::: look for small sub-diagonal element ::::::::::
  105    do 110 m = l, n
            if (m .eq. n) go to 120
            if (abs(e(m)) .le. machep * (abs(d(m)) + abs(d(m+1))))
     x         go to 120
  110    continue
c
  120    p = d(l)
         if (m .eq. l) go to 240
         if (j .eq. 30) go to 1000
         j = j + 1
c     :::::::::: form shift ::::::::::
         g = (d(l+1) - p) / (2.0d+0 * e(l))
         r = sqrt(g*g+1.0d+0)
         g = d(m) - p + e(l) / (g + sign(r,g))
         s = 1.0d+0
         c = 1.0d+0
         p = 0.0d+0
         mml = m - l
c     :::::::::: for i=m-1 step -1 until l do -- ::::::::::
         do 200 ii = 1, mml
            i = m - ii
            f = s * e(i)
            b = c * e(i)
            if (abs(f) .lt. abs(g)) go to 150
            c = g / f
            r = sqrt(c*c+1.0d+0)
            e(i+1) = f * r
            s = 1.0d+0 / r
            c = c * s
            go to 160
  150       s = f / g
            r = sqrt(s*s+1.0d+0)
            e(i+1) = g * r
            c = 1.0d+0 / r
            s = s * c
  160       g = d(i+1) - p
            r = (d(i) - g) * s + 2.0d+0 * c * b
            p = s * r
            d(i+1) = g + p
            g = c * r - b
c     :::::::::: form vector ::::::::::
      if(job.eq.0) goto 200
                  do 180 k = 1, n
               f = z(k,i+1)
               z(k,i+1) = s * z(k,i) + c * f
               z(k,i) = c * z(k,i) - s * f
  180       continue
c
  200    continue
c
         d(l) = d(l) - p
         e(l) = g
         e(m) = 0.0d+0
         go to 105
  240 continue
c     :::::::::: order eigenvalues and eigenvectors ::::::::::
      do 300 ii = 2, n
         i = ii - 1
         k = i
         p = d(i)
c
         do 260 j = ii, n
            if (d(j) .ge. p) go to 260
            k = j
            p = d(j)
  260    continue
c
         if (k .eq. i) go to 300
         d(k) = d(i)
         d(i) = p
c
         if(job.eq.0) goto 300
         do 280 j = 1, n
            p = z(j,i)
            z(j,i) = z(j,k)
            z(j,k) = p
  280    continue
c
  300 continue
c
      go to 1001
c     :::::::::: set error -- no convergence to an
c                eigenvalue after 30 iterations ::::::::::
 1000 ierr = l
 1001 return
c     :::::::::: last card of imtql3 ::::::::::
      end