File: Plo2dEch.c

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (1315 lines) | stat: -rw-r--r-- 35,179 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
/* Copyright (C) 1998 Chancelier Jean-Philippe */
#include <string.h> /* in case of dbmalloc use */

#if defined(THINK_C) || defined (__MWERKS__) || defined(WIN32)
#define M_PI	3.14159265358979323846
#endif

#if __STDC__
#include <stdlib.h>
#else
#include <malloc.h>
#endif

#include <stdio.h>
#include <math.h>
#include "Math.h"

/*-----------------------
 \encadre{List of Window Scale}
-----------------------------------------*/

#include "PloEch.h"

/* On veut avoir une echelle courante par fenetre graphique */
static void NumberFormat(),decompInf(),decompSup();
static void graduate1(),zoom_rect();
static void Axis1(), C2F(gradua)();

/* The scale List : on for ecah graphic window */

static WCScaleList *The_List = NULL;

/* Current Scale */

WCScaleList  Cscale = 
{ 
  {0.0,0.0,1.0,1.0},
  {0.0,0.0,1.0,1.0},
  75.0,53.0,450.0,318.0,
  "nn",
  {75,53,450,318},
  {2,10,2,10},
  {{1.0,0.0,0.0},{0.0,1.0,0.0},{0.0,0.0,1.0}},
  {0.0,1.0,0.0,1.0,0.0,1.0},
  35.0,45.0,
  0,/*unused */
  (struct WCScaleList *) 0 /*unused */
};

/** default values **/

static WCScaleList  Defscale = 
{ 
  {0.0,0.0,1.0,1.0},
  {0.0,0.0,1.0,1.0},
  75.0,53.0,450.0,318.0,
  "nn",
  {75,53,450,318},
  {2,10,2,10},
  {{1.0,0.0,0.0},{0.0,1.0,0.0},{0.0,0.0,1.0}},
  {0.0,1.0,0.0,1.0,0.0,1.0},
  35.0,45.0,
  0,/*unused */
  (struct WCScaleList *) 0 /*unused */
};

/*
  Current geometric transformation 
*/

#define XScale(x) ( Cscale.Wscx1*((x) -Cscale.WFRect1[0]) + Cscale.Wxofset1)
#define XLogScale(x) ( Cscale.Wscx1*(log10(x) -Cscale.WFRect1[0]) + Cscale.Wxofset1)
#define YScale(y) ( Cscale.Wscy1*(-(y)+Cscale.WFRect1[3]) + Cscale.Wyofset1)
#define YLogScale(y) ( Cscale.Wscy1*(-log10(y)+Cscale.WFRect1[3]) + Cscale.Wyofset1)

#define XPi2R(x)  Cscale.WFRect1[0] + (1.0/Cscale.Wscx1)*((x) - Cscale.Wxofset1)
#define YPi2R(y)  Cscale.WFRect1[3] - (1.0/Cscale.Wscy1)*((y) - Cscale.Wyofset1)


/* 
  Copy a WCscaleList into global values 
*/

void WCScaleList2Global(listptr)
     WCScaleList *listptr;
{
  int i,j;
  for (i=0; i< 4; i++) 
    {
      Cscale.WW1Rect[i]=listptr->WW1Rect[i];
      Cscale.WFRect1[i]=listptr->WFRect1[i];
      Cscale.WIRect1[i]=listptr->WIRect1[i];
      Cscale.Waaint1[i]=listptr->Waaint1[i];
    }
  for (i=0; i< 3; i++) 
    for (j=0; i< 3; i++) 
      Cscale.m[i][j]=listptr->m[i][j];
  for (i=0; i< 6; i++) 
    Cscale.bbox1[i]=listptr->bbox1[i] ;
  Cscale.Wxofset1=listptr->Wxofset1;
  Cscale.Wyofset1=listptr->Wyofset1;
  Cscale.Wscx1=listptr->Wscx1;
  Cscale.Wscy1=listptr->Wscy1;
  Cscale.logflag1[0] = listptr->logflag1[0];
  Cscale.logflag1[1] = listptr->logflag1[1];
}

/* return current window : ok if driver is Rec */

static integer curwin()
{
  integer verbose=0,narg,winnum;
  C2F(dr)("xget","window",&verbose,&winnum,&narg ,PI0,PI0,PI0,PD0,PD0,PD0,PD0,0L,0L);
  return(winnum);
}


/* 
 * Back to defaults values 
 */

void Cscale2default()
{
  int i,j;
  for (i=0; i< 4; i++) 
    {
      Cscale.WW1Rect[i]=      Defscale.WW1Rect[i];
      Cscale.WFRect1[i]=      Defscale.WFRect1[i];
      Cscale.WIRect1[i]=      Defscale.WIRect1[i];
      Cscale.Waaint1[i]=      Defscale.Waaint1[i];
    }
  for (i=0; i< 3; i++) 
    for (j=0; i< 3; i++) 
      Cscale.m[i][j]=Defscale.m[i][j];
  for (i=0; i< 6; i++) 
    Cscale.bbox1[i]=Defscale.bbox1[i] ;
  Cscale.Wxofset1=Defscale.Wxofset1;
  Cscale.Wyofset1=Defscale.Wyofset1;
  Cscale.Wscx1=Defscale.Wscx1;
  Cscale.Wscy1=Defscale.Wscy1;
  Cscale.logflag1[0] = Defscale.logflag1[0];
  Cscale.logflag1[1] = Defscale.logflag1[1];
  C2F(SetScaleWindowNumber)(curwin());
}

void Global2WCScaleList(listptr)
     WCScaleList *listptr;
{
  int i,j;
  for (i=0; i< 4; i++) 
    {
      listptr->WW1Rect[i]= Cscale.WW1Rect[i];                               
      listptr->WFRect1[i]= Cscale.WFRect1[i];
      listptr->WIRect1[i]= Cscale.WIRect1[i];
      listptr->Waaint1[i]= Cscale.Waaint1[i];
    }
  for (i=0; i< 3; i++) 
    for (j=0; i< 3; i++) 
      listptr->m[i][j]=      Cscale.m[i][j];
  for (i=0; i< 6; i++) 
    listptr->bbox1[i] =    Cscale.bbox1[i];
  listptr->Wxofset1= Cscale.Wxofset1;
  listptr->Wyofset1= Cscale.Wyofset1;
  listptr->Wscx1=  Cscale.Wscx1;
  listptr->Wscy1=  Cscale.Wscy1;
  listptr->logflag1[0] = Cscale.logflag1[0] ; 
  listptr->logflag1[1] = Cscale.logflag1[1] ;
}

/* Fix the current scales as the current scales of window i */

void C2F(GetScaleWindowNumber)(i)
     integer i;
{ 
  C2F(GetScaleWin)(The_List,Max(0L,i));
}

void C2F(GetScaleWin)(listptr, wi)
     WCScaleList *listptr;
     integer wi;
{
  if (listptr != (WCScaleList  *) NULL)
    { 
      if ((listptr->Win) == wi)
	WCScaleList2Global(listptr);
      else 
	C2F(GetScaleWin)((WCScaleList *) listptr->next,wi);
    }
}

/* stores the current scales as the current scales of window i */

void C2F(SetScaleWindowNumber)(i)
     integer i;
{ 
  C2F(SetScaleWin)(&The_List,Max(0L,i),0L);
}

void C2F(SetScaleWin)(listptr, i, lev)
     WCScaleList **listptr;
     integer i;
     integer lev;
{
  if ( *listptr == (WCScaleList  *) NULL)
    {
      *listptr = (WCScaleList *) MALLOC( sizeof ( WCScaleList ));
      if ( listptr == 0) 
	{
	  Scistring("AddWindowScale_ No More Place ");
	  return;
	}
      else 
	{ 
	  (*listptr)->Win  = lev;
	  (*listptr)->next = (struct WCScaleList *) NULL ;
	  Global2WCScaleList(*listptr);
	}
    }
  if ( lev == i) 
    { 
      Global2WCScaleList(*listptr);
    }
  else 
    C2F(SetScaleWin)((WCScaleList **) &((*listptr)->next),i,lev+1);
}


/*-----------------------------------------------------------------------
  Scale2D  Cette fonction fait deux choses:
  
  1.Elle modifie FRect,IRect,scx,scy,xofset,yofset
  2.Elle alloue ou r\'ealloue deux vecteurs xm et ym de type entier
  et de taille n 

  Cette fonction permet de fixer les echelles 
  apres appel de cette fonction pour que les nombres r\'eel 
  (x,y) dans FRect1={xmin,ymin,xmax,ymax} soient dessin\'es sur les 
  points en pixel du Rectangle IRect={xupleft,yupleft,xlarge,yheight}

    xpixel=inint( scx*(x -FRect[0]) + xofset);
    ypixel=inint( scy*(-y+FRect[3]) + yofset);

  la fonction echelle2d plus bas permet d'effectuer cette op\'eration 

  Si on appelle cette fonction avec la valeur 

  job=0, l'appel modifie FRect et IRect qui recoivent les valeurs 
          courantes des echelles

  job=1  IRect recoit la valeur courante 
	 FRect transmis est utilise et non modifie et sert a etablir 
	 une nouvelle valeur courante 

  job=2, FRect et IRect  sont utilises pour fixer 
         de nouvelles valeurs courantes

---------------------------------------------------------------------------*/

void Scale2D(job, FRect, IRect, aaint, scx, scy, xofset, yofset, logflag, xm, ym, n, err)
     integer job;
     double *FRect;
     integer *IRect;
     integer *aaint;
     double *scx;
     double *scy;
     double *xofset;
     double *yofset;
     char *logflag;
     integer **xm;
     integer **ym;
     integer n;
     integer *err;
{
  char c;
  integer verbose=0,narg,xz[2];
  integer  wmax,hmax,mfact, *zm;
  integer i;
  C2F(dr)("xget","wdim",&verbose,xz,&narg, PI0, PI0,PI0,PD0,PD0,PD0,PD0,0L,0L);
  wmax=xz[0];hmax=xz[1];
  mfact=4;
  switch (job)
    {
    case 0 :
      /** On utilise le scale de l'appel pr\'ec\'edent a Scale2D **/
      *scx = Cscale.Wscx1; *scy = Cscale.Wscy1; *xofset= Cscale.Wxofset1; *yofset= Cscale.Wyofset1;
      logflag[0]=Cscale.logflag1[0];logflag[1]=Cscale.logflag1[1];
      for (i=0; i < 4 ; i++) 
	{ IRect[i]=Cscale.WIRect1[i];FRect[i]=Cscale.WFRect1[i];aaint[i]=Cscale.Waaint1[i];}
      break;
    case 1 :
      /** Utilise FRect,et logflag et aaint Irect <- valeurs par defaut **/
      *scx =  ((double) wmax*Cscale.WW1Rect[2]-wmax*Cscale.WW1Rect[2]/((double) mfact));
      *scy =  ((double) hmax*Cscale.WW1Rect[3]-hmax*Cscale.WW1Rect[3]/((double) mfact));
      *xofset=Cscale.Wxofset1= ((double) wmax*Cscale.WW1Rect[2])/((double) 2.0*mfact);
      *yofset=Cscale.Wyofset1= ((double) hmax*Cscale.WW1Rect[3])/((double) 2.0*mfact);
      IRect[0] = inint(*xofset+Cscale.WW1Rect[0]*((double)wmax));
      IRect[1] = inint(*yofset+Cscale.WW1Rect[1]*((double)hmax));
      IRect[2] = inint(*scx);
      IRect[3] = inint(*scy);
      Cscale.Wscx1 =  IRect[2]; Cscale.Wscy1 = IRect[3];
      *xofset=Cscale.Wxofset1= IRect[0]; *yofset=Cscale.Wyofset1= IRect[1];
      for (i=0; i < 4 ; i++) { Cscale.WIRect1[i]=IRect[i];Cscale.WFRect1[i]=FRect[i];}
      *scx=Cscale.Wscx1 =(Abs(FRect[0]-FRect[2])<=SMDOUBLE) ?
	Cscale.Wscx1/SMDOUBLE:Cscale.Wscx1/Abs(FRect[0]-FRect[2]);
      *scy=Cscale.Wscy1 =(Abs(FRect[1]-FRect[3])<=SMDOUBLE)?
	Cscale.Wscy1/SMDOUBLE:Cscale.Wscy1/Abs(FRect[1]-FRect[3]);
      Cscale.logflag1[0]=logflag[0];      Cscale.logflag1[1]=logflag[1];
      for (i=0; i < 4 ; i++) { Cscale.Waaint1[i]=aaint[i];}
      if ( (c=GetDriver()) == 'X' ||  c == 'R' || c == 'I' || c == 'G' || c == 'W' )
	{
	  C2F(SetScaleWindowNumber)(curwin());
	}
      break;
    case 2:
      Cscale.Wscx1 =  IRect[2]; Cscale.Wscy1 = IRect[3];
      *xofset=Cscale.Wxofset1= IRect[0]; *yofset=Cscale.Wyofset1= IRect[1];
      for (i=0; i < 4 ; i++) { Cscale.WIRect1[i]=IRect[i];Cscale.WFRect1[i]=FRect[i];}
      *scx=Cscale.Wscx1 =(Abs(FRect[0]-FRect[2])<=SMDOUBLE) ?
	Cscale.Wscx1/SMDOUBLE:Cscale.Wscx1/Abs(FRect[0]-FRect[2]);
      *scy=Cscale.Wscy1 =(Abs(FRect[1]-FRect[3])<=SMDOUBLE)?
	Cscale.Wscy1/SMDOUBLE:Cscale.Wscy1/Abs(FRect[1]-FRect[3]);
      Cscale.logflag1[0]=logflag[0];Cscale.logflag1[1]=logflag[1];
      for (i=0; i < 4 ; i++) { Cscale.Waaint1[i]=aaint[i];}
      /* stores the current scales as the current scales of window i */
      if ( (c=GetDriver()) == 'X' ||  c == 'R' || c == 'I' || c == 'G' || c == 'W' )
	{
	  C2F(SetScaleWindowNumber)(curwin());
	}
      break;
    }
  /** Allocation  **/
  Alloc(xm,ym,&zm,n,n,0L,err);
  if ( *err == 0)
    {
      Scistring("Scale2D : No more Place\n");
      return;
    }
}

/**
  C2F(setscale2d)(WRect,FRect) 
  fixe une echelle pour les appels suivants 
  FRect est le rectangle reels que l'on veut voir {xmin,ymin,xmax,ymax}
  sur le dessin 
  WRect indique la sous fenetre a choisir dans la fenetre graphique
  pour faire le dessin 
  WRect=[<x-upperleft>,<y-upperleft>,largeur,hauteur]
  ou ces valeurs reelles sont des proportions de la largeur et hauteur de la 
  fenetre graphique
  par exemple WRect=[0,0,1.0,1.0] indique que l'on utilise tye la fenetre
  WRect=[0.5,0.5,0.5,0.5] indique que l'on utilise le quart gauhe en bas 
  de la fenetre coupee en 4
**/


int C2F(setscale2d)(WRect,FRect,logscale,l1)
     double FRect[4], WRect[4];
     char *logscale;
     integer l1;
{
  double scx,scy,xofset,yofset;
  integer *xm,*ym,err=0,i,IRect[4];
  static integer aaint[]={2,10,2,10};
  if (GetDriver()=='R') StoreEch("scale",WRect,FRect,logscale);
  for ( i=0; i < 4 ; i++) 
    {
        Cscale.WW1Rect[i]=WRect[i];
    }
  if (logscale[0]=='l') 
    {
      FRect[0]=log10(FRect[0]);
      FRect[2]=log10(FRect[2]);
    }
  if (logscale[1]=='l') 
    {
      FRect[1]=log10(FRect[1]);
      FRect[3]=log10(FRect[3]);
    }
  Scale2D(1L,FRect,IRect,aaint,&scx,&scy,&xofset,&yofset,logscale,&xm,&ym,0L,&err);
  return(0);
}

int C2F(getscale2d)(WRect,FRect,logscale,l1)
     double FRect[4],WRect[4];
     char *logscale;
     integer l1;
{
  double F1Rect[4],scx,scy,xofset,yofset;
  integer *xm,*ym,err=0,i,IRect[4],aaint[4];
  Scale2D(0L,F1Rect,IRect,aaint,&scx,&scy,&xofset,&yofset,logscale,&xm,&ym,0L,&err);
  for ( i=0; i < 4 ; i++) 
    {
      FRect[i]=F1Rect[i];
      WRect[i]=Cscale.WW1Rect[i];
    }
  if (logscale[0]=='l') 
    {
      FRect[0]=exp10(FRect[0]);
      FRect[2]=exp10(FRect[2]);
    }
  if (logscale[1]=='l') 
    {
      FRect[1]=exp10(FRect[1]);
      FRect[3]=exp10(FRect[3]);
    }
  return(0);
}

/*--------------------------------------------------------------------
  Les fonction qui suivent sont utilisess dans Xcall1 pour que les 
  primitives graphiques utilisent l'echelle fix\'ess par Store2D
    
    C2F(echelle2d)(x,y,x1,y1,n1,n2,rect,dir)

    Cette fonction permet de convertir des valeurs absolues en valeurs 
    pixel et reciproquement la transformation utilisee etant la 
    trasformation courante qui a \'et\'e mise en place par l'appel a Scale2D

   
    if dir="f2i" -> double to integer (you give x and y and get x1,y1)
    if dir="i2f" -> integer to double (you give x1 and y1 and get x,y)

    rect is also a return value it's the rectangle in pixel 
    <x,y,width,height> set in Scale2D in which a plot suh as plot2d 
    would take place
    
-> memory space for the vectors x[],y[],x1[],y1[] must be 
   allocated before the call to echelle2d_
   
 lstr : unused ( but used by Fortran ) 
--------------------------------------------------------------------------*/

int C2F(echelle2d)(x,y,x1,yy1,n1,n2,rect,dir,lstr)
     double x[],y[];
     integer x1[],yy1[],*n1,*n2,rect[];
     char dir[];
     integer lstr;
{
  integer i;
  if (strcmp("f2i",dir)==0) 
    {
      /** double to integer (pixel) direction **/
      for ( i=0 ; i < (*n1)*(*n2) ; i++)
	{
	  if (Cscale.logflag1[0] == 'n') 
	    x1[i]=inint( XScale(x[i]));
	  else 
	    x1[i]=inint( XLogScale(x[i])) ;
	  if (Cscale.logflag1[1] == 'n') 
	    yy1[i]=inint( YScale(y[i]));
	  else 
	    yy1[i]=inint( YLogScale(y[i]));
	}
    }
  else 
    {
      if (strcmp("i2f",dir)==0) 
	{
	  for ( i=0 ; i < (*n1)*(*n2) ; i++)
	    {
	      x[i]= XPi2R( x1[i] );
	      y[i]= YPi2R( yy1[i] );
	      if (Cscale.logflag1[0] == 'l') x[i]=exp10(x[i]);
	      if (Cscale.logflag1[1] == 'l') y[i]=exp10(y[i]);
	    }
	}
      else 
	sciprint(" Wrong dir %s argument in echelle2d\r\n",dir);
    }
  for (i=0;i<4;i++) rect[i]=Cscale.WIRect1[i];
  return(0);
}

/** meme chose mais pour transformer des longueurs **/
/** Attention ce qui suit ne marche pas dans le cas d'echelle logarithmiques **/
/** on ne peut pas transformer les longueurs, il faut transformer les deux points **/

void C2F(echelle2dl)(x, y, x1, yy1, n1, n2, rect, dir)
     double *x;
     double *y;
     integer *x1;
     integer *yy1;
     integer *n1;
     integer *n2;
     integer *rect;
     char *dir;
{
  integer i;
  if (strcmp("f2i",dir)==0) 
    {
      /** double to integer (pixel) direction **/
      for ( i=0 ; i < (*n1)*(*n2) ; i++)
	{
	  x1[i]=inint( Cscale.Wscx1*( x[i]));
	  yy1[i]=inint( Cscale.Wscy1*( y[i]));
	}
    }
  else 
    {
      if (strcmp("i2f",dir)==0) 
	{
	  for ( i=0 ; i < (*n1)*(*n2) ; i++)
	    {
	      x[i]=x1[i]/Cscale.Wscx1;
	      y[i]=yy1[i]/Cscale.Wscy1;
	    }
	}
      else 
	sciprint(" Wrong dir %s argument in echelle2d\r\n",dir);
    }
  for (i=0;i<4;i++) rect[i]=Cscale.WIRect1[i];
}


/** meme chose mais pour transformer des ellipses **/

void C2F(ellipse2d)(x, x1, n, dir)
     double *x;
     integer *x1;
     integer *n;
     char *dir;
{
  integer i;
  if (strcmp("f2i",dir)==0) 
    {
      /** double to integer (pixel) direction **/
      for ( i=0 ; i < (*n) ; i=i+6)
	{
	  x1[i  ]=inint(XScale(x[i]));
	  x1[i+1]=inint(YScale(x[i+1]));
	  x1[i+2]=inint( Cscale.Wscx1*( x[i+2]));
	  x1[i+3]=inint( Cscale.Wscy1*( x[i+3]));
	  x1[i+4]=inint( x[i+4]);
	  x1[i+5]=inint( x[i+5]);
	}
    }
  else 
    {
      if (strcmp("i2f",dir)==0) 
	{
	  for ( i=0 ; i < (*n) ; i=i+6)
	    {
	      x[i]= XPi2R(x1[i]); 
	      x[i+1]= YPi2R( x1[i+1] ); 
	      x[i+2]=x1[i+2]/Cscale.Wscx1;
	      x[i+3]=x1[i+3]/Cscale.Wscy1;
	      x[i+4]=x1[i+4];
	      x[i+5]=x1[i+5];
	    }
	}
      else 
	sciprint(" Wrong dir %s argument in echelle2d\r\n",dir);
    }
}


/** meme chose mais pour transformer des rectangles **/
/** marche en echelle log **/

void C2F(rect2d)(x, x1, n, dir)
     double *x;
     integer *x1;
     integer *n;
     char *dir;
{
  integer i;
  if (strcmp("f2i",dir)==0) 
    {
      /** double to integer (pixel) direction **/
      for ( i=0 ; i < (*n) ; i= i+4)
	{
	  if ( Cscale.logflag1[0] == 'n' ) 
	    {
	      x1[i]=inint(XScale(x[i]));
	      x1[i+2]=inint( Cscale.Wscx1*( x[i+2]));
	    }
	  else 
	    {
	      x1[i]=inint(XLogScale(x[i]));
	      x1[i+2]=inint( Cscale.Wscx1*(log10((x[i]+x[i+2])/x[i])));
	    } 
	  if ( Cscale.logflag1[1] == 'n' ) 
	    {
	      x1[i+1]=inint(YScale(x[i+1]));
	      x1[i+3]=inint( Cscale.Wscy1*( x[i+3]));
	    }
	  else 
	    {
	      x1[i+1]=inint(YLogScale(x[i+1]));
	      x1[i+3]=inint( Cscale.Wscy1*(log10(x[i+1]/(x[i+1]-x[i+3]))));
	    }
	}
    } 
  else 
    {
      if (strcmp("i2f",dir)==0) 
	{
	  for ( i=0 ; i < (*n) ; i=i+4)
	    {
	      if ( Cscale.logflag1[0] == 'n' ) 
		{
		  x[i]= XPi2R(x1[i] );
		  x[i+2]=x1[i+2]/Cscale.Wscx1;
		}
	      else
		{
		  x[i]=exp10( XPi2R(x1[i]));
		  x[i+2]=exp10(XPi2R( x1[i]+x1[i+2] ));
		  x[i+2] -= x[i];
		}
	      if ( Cscale.logflag1[1] == 'n' ) 
		{
		  x[i+1]= YPi2R( x1[i+1]);
		  x[i+3]=x1[i+3]/Cscale.Wscy1;
		}
	      else
		{
		  x[i+1]=exp10( YPi2R( x1[i+1]));
		  x[i+3]=exp10( YPi2R( x1[i+3]+x1[i+1])); 
		  x[i+2] -= x[i+1];
		}
	    }
	}
      else 
	sciprint(" Wrong dir %s argument in echelle2d\r\n",dir);
    }
}

 
/** meme chose mais pour axis **/

void C2F(axis2d)(alpha, initpoint, size, initpoint1, size1)
     double *alpha;
     double *initpoint;
     double *size;
     integer *initpoint1;
     double *size1;
{
  double sina ,cosa;
  double xx,yy,scl;
  /* pour eviter des problemes numerique quand Cscale.scx1 ou Cscale.scy1 sont 
     tres petits et cosal ou sinal aussi 
     */
  if ( Abs(*alpha) == 90 ) 
    {
      scl=Cscale.Wscy1;
    }
  else 
    {
      if (Abs(*alpha) == 0) 
	{
	  scl=Cscale.Wscx1;
	}
      else 
	{
	  sina= sin(*alpha * M_PI/180.0);
	  cosa= cos(*alpha * M_PI/180.0);
	  xx= cosa*Cscale.Wscx1; xx *= xx;
	  yy= sina*Cscale.Wscy1; yy *= yy;
	  scl= sqrt(xx+yy);
	}
    }
  size1[0] = size[0]*scl;
  size1[1]=  size[1]*scl;
  size1[2]=  size[2];
  initpoint1[0]=inint(XScale(initpoint[0]));
  initpoint1[1]=inint(YScale(initpoint[1]));
}

/** Changement interactif d'echelle **/

extern int EchCheckSCPlots();

void zoom()
{
  char driver[4];
  integer aaint[4],flag[2];
  integer pixmode,alumode,verbose=0,narg,ww;
  C2F(dr1)("xget","window",&verbose,&ww,&narg,PI0,PI0,PI0,PD0,PD0,PD0,PD0,0L,0L);
  if ( EchCheckSCPlots("v",&ww) >= 2) 
    {
      sciprint("Can't zoom on graphics with subwindows\r\n");
      return;
    }
  C2F(dr)("xget","pixmap",&verbose,&pixmode,&narg,PI0,PI0,PI0,PD0,PD0,PD0,PD0,0L,0L);
  C2F(dr)("xget","alufunction",&verbose,&alumode,&narg,PI0,PI0,PI0,PD0,PD0,PD0,PD0,0L,0L);
  GetDriver1(driver,PI0,PI0,PI0,PI0,PI0,PI0,PD0,PD0,PD0,PD0);
  if (strcmp("Rec",driver) != 0) 
    {
      Scistring("\n Use the Rec driver to zoom " );
      return;
    }
  else 
    {
      /* Using the mouse to get the new rectangle to fix boundaries */
      integer ibutton,in,iwait=0,istr=0;
      double x0,yy0,x,y,xl,yl,bbox[4];
#ifdef WIN32
	  SetWinhdc();
	  SciMouseCapture();
#endif 
      C2F(SetDriver)("X11",PI0,PI0,PI0,PI0,PI0,PI0,PD0,PD0,PD0,PD0);

      /** XXXXXX : a regler pour Win32 in = 6 **/
      C2F(dr1)("xset","alufunction",(in=6,&in),PI0,PI0,PI0,PI0,PI0,PD0,PD0,PD0,PD0,0L,0L);
      C2F(dr1)("xclick","one",&ibutton,&iwait,&istr,PI0,PI0,PI0,&x0,&yy0,PD0,PD0,0L,0L);
      x=x0;y=yy0;
      ibutton=-1;
      while ( ibutton == -1 ) 
	{
	  /* dessin d'un rectangle */
	  zoom_rect(x0,yy0,x,y);
	  if ( pixmode == 1) C2F(dr1)("xset","wshow",PI0,PI0,PI0,PI0,PI0,PI0,PD0,PD0,PD0,PD0,0L,0L);
	  C2F(dr1)("xgetmouse","one",&ibutton,&iwait,PI0,PI0,PI0,PI0,&xl, &yl,PD0,PD0,0L,0L);
	  /* effacement du rectangle */
	  zoom_rect(x0,yy0,x,y);
	  if ( pixmode == 1) C2F(dr1)("xset","wshow",PI0,PI0,PI0,PI0,PI0,PI0,PD0,PD0,PD0,PD0,0L,0L);
	  x=xl;y=yl;
	}
#ifndef WIN32
      /** XXXX */
      C2F(dr1)("xset","alufunction",(in=3,&in),PI0,PI0,PI0,PI0,PI0,PD0,PD0,PD0,PD0,0L,0L);
#endif

      /* Back to the default driver which must be Rec and redraw of the recorded
	 graphics with the new scales 
	 we should add something to ``smooth'' the selected boundaries 
	 */
      bbox[0]=Min(x0,x);
      bbox[1]=Min(yy0,y);
      bbox[2]=Max(x0,x);
      bbox[3]=Max(yy0,y);
      C2F(dr1)("xclear","v",PI0,PI0,PI0,PI0,PI0,PI0,PD0,PD0,PD0,PD0,0L,0L);

      /** XXXXXXX **/
      C2F(dr1)("xset","alufunction",&alumode,PI0,PI0,PI0,PI0,PI0,PD0,PD0,PD0,PD0,0L,0L);

      C2F(dr1)("xget","window",&verbose,&ww,&narg,PI0,PI0,PI0,PD0,PD0,PD0,PD0,0L,0L);
      flag[0]=1;
      flag[1]=0;
#ifdef WIN32
      ReleaseWinHdc();
      SciMouseRelease();
#endif 
      C2F(SetDriver)(driver,PI0,PI0,PI0,PI0,PI0,PI0,PD0,PD0,PD0,PD0);
      Tape_ReplayNewScale(" ",&ww,flag,PI0,aaint,PI0,PI0,bbox,PD0,PD0,PD0);
    }
}


void unzoom()
{
  char driver[4];
  integer ww,verbose=0,narg;
  GetDriver1(driver,PI0,PI0,PI0,PI0,PI0,PI0,PD0,PD0,PD0,PD0);
  if (strcmp("Rec",driver) != 0) 
    {
      Scistring("\n Use the Rec driver to unzoom " );
      return;
    }
  else 
    {
      C2F(dr1)("xclear","v",PI0,PI0,PI0,PI0,PI0,PI0,PD0,PD0,PD0,PD0,0L,0L);
      C2F(dr1)("xget","window",&verbose,&ww,&narg,PI0,PI0,PI0,PD0,PD0,PD0,PD0,0L,0L);
      Tape_ReplayUndoScale("v",&ww);
    }
}
/**
  Win32, warning when using xor mode
  colors are changed and black is turned to white
  so we must use an other pattern than the black one
  inside dbox
  **/


static void zoom_rect(x0, yy0, x, y)
     double x0;
     double yy0;
     double x;
     double y;
{
  double xi,yi,w,h;
#ifdef WIN32
  integer verbose=0,pat,pat1=3,narg;
  C2F(dr)("xget","pattern",&verbose,&pat,&narg,PI0,PI0,PI0,PD0,PD0,PD0,PD0,0L,0L);
  C2F(dr)("xset","pattern",&pat1,PI0,PI0,PI0,PI0,PI0,PD0,PD0,PD0,PD0,0L,0L);
#endif
  xi=Min(x0,x);
  w=Abs(x0-x);
  yi=Max(yy0,y);
  h=Abs(yy0-y);
  C2F(dr1)("xrect","v",PI0,PI0,PI0,PI0,PI0,PI0,&xi,&yi,&w,&h,0L,0L);
#ifdef WIN32
  C2F(dr)("xset","pattern",&pat,PI0,PI0,PI0,PI0,PI0,PD0,PD0,PD0,PD0,0L,0L);
#endif
}



/* 
  FRectI=[xmin,ymin,xmax,ymax] est transforme de 
  facon a avoir une graduation simple et reguliere 
  Xdec,Ydec,xnax,ynax
  caracterisant cette graduation 
  (voir les fonctions qui suivent )
*/

void Gr_Rescale(logf, FRectI, Xdec, Ydec, xnax, ynax)
     char *logf;
     double *FRectI;
     integer *Xdec;
     integer *Ydec;
     integer *xnax;
     integer *ynax;
{
  double FRectO[4];
  if (logf[0] == 'n') 
    {
      C2F(graduate)(FRectI,FRectI+2,FRectO,FRectO+2,xnax,xnax+1,Xdec,Xdec+1,Xdec+2);
      FRectI[0]=FRectO[0];FRectI[2]=FRectO[2];
    }
  else
    {
      Xdec[0]=inint(FRectI[0]);
	  Xdec[1]=inint(FRectI[2]);
	  Xdec[2]=0;
    }
  if (logf[1] == 'n') 
    {
      C2F(graduate)(FRectI+1,FRectI+3,FRectO+1,FRectO+3,ynax,ynax+1,Ydec,Ydec+1,Ydec+2);
      FRectI[1]=FRectO[1];FRectI[3]=FRectO[3];
    }
  else
    {
      Ydec[0]=inint(FRectI[1]);Ydec[1]=inint(FRectI[3]);Ydec[2]=0;
    }

}

/* 
  cadre + graduation 
*/

void C2F(aplot1)(FRect, IRect, Xdec, Ydec, npx, npy, logflag, scx, scy, xofset, yofset)
     double *FRect;
     integer *IRect;
     integer *Xdec;
     integer *Ydec;
     integer *npx;
     integer *npy;
     char *logflag;
     double scx;
     double scy;
     double xofset;
     double yofset;
{
  C2F(dr)("xrect","v",&IRect[0],&IRect[1],&IRect[2],&IRect[3], PI0,PI0,PD0,PD0,PD0,PD0,0L,0L);
  Axis1(0L,npx,Xdec[0],Xdec[1],Xdec[2],logflag[0],FRect,scx,scy,xofset,yofset);
  Axis1(-90L,npy,Ydec[0],Ydec[1],Ydec[2],logflag[1],FRect,scx,scy,xofset,yofset);
}

#define YMTrans(y) ( scy*(-(y)+FRect[3]) +yofset)
#define XMTrans(x) ( scx*((x) -FRect[0]) + xofset)

/* 
  trace un axe gradue en nax[1] grand intervalles avec les nombres 
  x_i= (kminr + i*(kmaxr-kminr) / *np2)*10^ar 
  ecrits pour chaque intervalles chacun des np2 intervalles etant 
  recoupe en np1 intervalles.
  FRect,scx,scy,xofset,yofset : donnent les parametres de changement 
  d'echelle entre coordonnees reelles et coordonnnees pixels.
*/


static void Axis1(axdir, nax, kminr, kmaxr, ar, logflag, FRect, scx, scy, xofset, yofset)
     integer axdir;
     integer *nax;
     integer kminr;
     integer kmaxr;
     integer ar;
     char logflag;
     double *FRect;
     double scx;
     double scy;
     double xofset;
     double yofset;
{
  integer LDPoint1[2];
  integer rect[4],ipas;
  double size1[3];
  integer flag=0,xx=0,yy=0,posi[2],smallersize;
  integer i,barlength,logrect[4],fontid[2],narg,verbose=0;
  if ( axdir == 0 ) 
    {
      size1[1]= scx*(FRect[2]-FRect[0])/150.0;
      size1[2]=2.0;
      size1[0]= scx*( (FRect[2]-FRect[0])/((double) nax[0]*nax[1]));
    }
  else 
    {
      size1[1]= scy*((FRect[1]-FRect[3])/100.0);
      size1[2]=2.0;
      size1[0]= scy*( (FRect[3]-FRect[1])/((double) nax[0]*nax[1]));
    }
  LDPoint1[0] = inint(XMTrans(FRect[0]));
  LDPoint1[1] = inint(YMTrans(FRect[1]));
  C2F(dr)("xaxis","void",&axdir,nax,PI0,LDPoint1,PI0,PI0, size1,PD0,PD0,PD0,0L,0L);
  barlength=inint(1.2*(size1[1]*size1[2]));
  if (logflag == 'l' )
    {
      C2F(dr)("xstringl","10",&xx,&yy,logrect,PI0,PI0,PI0,PD0,PD0,PD0,PD0,0L,0L);	
      C2F(dr)("xget","font",&verbose,fontid,&narg,PI0,PI0,PI0,PD0,PD0,PD0,PD0,0L,0L);
      smallersize=fontid[1]-2;
      C2F(dr)("xset","font",fontid,&smallersize,PI0,PI0,PI0,PI0,PD0,PD0,PD0,PD0,0L,0L);
    }
  /* c'est dividible par constrution de nax[1] */
  ipas =(kmaxr-kminr)/nax[1] ;
  for (i=kminr ; i <= kmaxr ; i+= ipas )
    { 
      double angle=0.0;
      char foo[100];
      NumberFormat(foo,i,ar);
      C2F(dr)("xstringl",foo,&xx,&yy,rect,PI0,PI0,PI0,PD0,PD0,PD0,PD0,0L,0L);
      if ( axdir == 0 ) 
	{
	  integer iz1;
	  iz1= inint(XMTrans(((double) i)* exp10((double) ar)));
	  posi[0]=iz1 -rect[2]/2;
	  posi[1]=LDPoint1[1] + rect[3]+ barlength;
	}
      else 
	{
	  integer iz2;
	  iz2= inint(YMTrans(((double) i)* exp10((double) ar)));
	  posi[0]=LDPoint1[0] - rect[2] +barlength;
	  posi[1]=iz2 + rect[3]/4;
	}
      C2F(dr)("xstring",foo,&(posi[0]),&(posi[1]),PI0,&flag,PI0,PI0,&angle,PD0,PD0,PD0,0L,0L); 
      if ( logflag == 'l' )
	{
	  C2F(dr)("xset","font",fontid,fontid+1,PI0,PI0,PI0,PI0,PD0,PD0,PD0,PD0,0L,0L);
	  C2F(dr)("xstring","10",(posi[0] -= logrect[2],&posi[0]),
		  (posi[1] += logrect[3],&posi[1]),
		  PI0,&flag,PI0,PI0,&angle,PD0,PD0,PD0,0L,0L);
	  C2F(dr)("xset","font",fontid,&smallersize,PI0,PI0,PI0,PI0,PD0,PD0,PD0,PD0,0L,0L);
	}
    }
  if ( logflag == 'l' ) C2F(dr)("xset","font",fontid,fontid+1,PI0,PI0,PI0,PI0,PD0,PD0,PD0,PD0,0L,0L);
}

/* Format pour imprimer un nombre de la forme k10^a */

static void NumberFormat(str, k, a)
     char *str;
     integer k;
     integer a;
{
  if ( k==0) 
    {
      sprintf(str,"0");
    }
  else
    {
      switch (a) 
	{
	case -1: sprintf(str,"%.1f",(double)k/10.0);break;
	case -2: sprintf(str,"%.2f",(double)k/100.0);break;
	case 0 : sprintf(str,"%d",(int)k);break;
	case 1 : sprintf(str,"%d0",(int)k);break;
	case 2 : sprintf(str,"%d00",(int)k);break;
	default: sprintf(str,"%de%d",(int)k,(int)a) ;break;
	}
    }
}


/* 
  La ryine qui suit : pour [ xmi,xma] donn\'e
  cherche a trouver (xi,xa,np1,np2) tels que
  xi <= xmi <= xmax <= xa ou l'intervalle [xi,xa] 
  ou xi et xa sont de la forme kminr 10^ar et kmaxr 10^ar.
  l'intervalle [xi,xa] se gradue de facon simple en *np2 intervalles
  ( kminr-kmaxr est divisible par *np2 ) 
  x_i= (kminr + i*(kmaxr-kminr)/ (*np2))*10^ar;
  i=0:(*np2)
  chacun des np2 intervalles peut-etre a son tour coupe 
  en np1 intervalles sans graduation.
  [np1,np2] sont comme les parametres nax de plot2d.
  
  on ne veut pas un nombre d'intervalle trop grand ( *np2 <=10 ) 
  et on veut que [xi,xa] soit aussi voisin que possible de l'intervalle 
  d'origine [xmi,xma]
  Attention il faut que xmi <= xma 
*/

int C2F(graduate)(xmi,xma,xi,xa,np1,np2,kminr,kmaxr,ar)
     double *xmi,*xma,*xi,*xa;
     integer *np1,*np2,*kminr,*kmaxr,*ar;
{
  if ( *xmi > *xma) 
    {
      double xma1=*xmi, xmi1=*xma;
      graduate1(&xmi1,&xma1,xi,xa,np1,np2,kminr,kmaxr,ar,0);
    }
  else 
    graduate1(xmi,xma,xi,xa,np1,np2,kminr,kmaxr,ar,0);
  return(0);
}

static void graduate1(xmi, xma, xi, xa, np1, np2, kminr, kmaxr, ar,count)
     double *xmi;
     double *xma;
     double *xi;
     double *xa;
     integer *np1;
     integer *np2;
     integer *kminr;
     integer *kmaxr;
     integer *ar;
     int count;
{
  integer npr,b,i,dx,dxmi,dxma;
  /* fprintf(stderr,"[%20.10f,%20.10f]\n",*xmi,*xma); */
  /* 
    Recherche de la precision a laquelle il faut chercher 
   */
  dx   = ( (*xma) != (*xmi) ) ? (int) ceil(log10(Abs((*xma)-(*xmi)))) :0;
  dxmi = (*xmi != 0 ) ? (int) ceil(log10(Abs((*xmi)))) : 0;
  dxma = (*xma != 0 ) ? (int) ceil(log10(Abs((*xma)))) : 0;
  dx=Max(dx-dxmi,dx-dxma);
  /* il faut limiter b de sorte que dans la decomposition */
  /* avec b les nombres entiers manipules ne deviennent pas trop grands */
  /* on choisit donc b < 10 en considerant que le plus grand entier est */
  /* 0x7FFFFFFF */
  /* on prends aussi un b minimum de 3 : pour avoir des intervalles */
  /* plus serr'es  : ce nombre est 'eventuellement a affiner      */
  b=Max(-dx+2,3);
  /* fprintf(stderr,"choix de b=%d",b); */
  if ( b >= 10 )
    {
      double xmi1,xma1;
      int iexp ;
      /* fprintf(stderr,"je ne peux decomposer les 2 nombres sont identiques\n"); */
      /* 
	a la precision donnee les deux nombre ne peuvent etre decomposer 
	kmin,kmax devrait sinon depasser maxint
	on les ecarte de ce qu'il faut pour pouvoir 
	les separer. 
	Attention : il faut faire attention de bien choisir iexp
	pour ne pas boucler la dedans 
	*/
      iexp = 9 - dxmi -1; 
      xmi1 = *xmi-exp10((double) - iexp);
      xma1 = *xmi+exp10((double) - iexp);
      if ( count > 1 ) 
	{
	  sciprint("Internal Error: Loop in graduate1 \r\n");
	  sciprint("Please send a Bug report to scilab@inria.fr\r\n");
	}
      graduate1(&xmi1,&xma1,xi,xa,np1,np2,kminr,kmaxr,ar,count+1);
      return;
    }
  while ( b >= 1 ) 
    {
      /* fprintf(stderr,"\tAppel avec b=%d\n",b); */
      C2F(gradua)(xmi,xma,kminr,kmaxr,ar,&npr,&b) ;
      *xi= (*kminr)*exp10((double) *ar);
      *xa= (*kmaxr)*exp10((double) *ar);
      /** fprintf(stderr,"\tRes=[%20.10f,%20.10f]-->[%d,%d,10^%d,%d]\n",*xi,*xa
	      ,*kminr,*kmaxr,*ar,npr); */
      *np2= npr;
      if ( *np2 <= 20 ) 
	break;
      else
	b--;
    }
  /* 
    on veut essayer de ne pas depasser 10 intervalles ( *np2 <= 10) 
    pour les intervalle ou on ecrit un nombre,
    or on peut en avoir jusqu'a 20. On regarde si le nombre d'intervalle 
    est divisible. on aura alors une graduation en np2 pour l'ecriture 
    des nombres et une sous graduation np1 juste avec des tirets.
    */
  *np1= 2 ;
  if ( *np2 <= 10 ) return ;
  /* le nombre est > 10 : s'il est impair on rajy e 1 
     pour diviser par deux */
  if ( *np2 % 2 == 1 ) 
    {
      int step ; 
      step = (*kmaxr-*kminr)/(*np2);
      (*np2)++;
      *kmaxr += step;
      *xa =  (*kmaxr)*exp10((double) *ar);
    }
  /* On recherche des diviseurs a nouveaux pour diminuer le nombre 
     d'intervalles */
  for ( i=2 ; i <=10 ; i++)
    {
      if ( *np2 % i == 0)       
	{
	  *np1=i,*np2 /= i;
	  return;
	}
    }
  *np1=*np2;*np2=1;
}


/*
  renvoit kminr,kmaxr et ar tels que 
  [kminr*10^ar,kmaxr*10^ar] contient [xmi,xma] 
  b est un parametre de decompSup,decompInf 
  on doit avoir a l'appel xmi < xma.
  le choix se fait entre deux intervalles possibles 
  on choisit celui qui est le plus proche de [xmi,xma] 
  a condition que (kmaxr-kminr) <= 20 
  pour b=1 on sait que (kmaxr-kminr ) <= 20 
  20 intervalles au plus ( que l'on obtient si xmin et xmax sont 
  de signe opposes sinon c'est 10 )
*/

/* np2, and np1 must be smaller than maxint */

#define DMAX 0xFFFFFFF

static void C2F(gradua)(xmi,xma,kminr,kmaxr,ar,npr,b) 
     double *xmi,*xma;
     integer *kminr,*kmaxr,*ar,*b,*npr;
{
  double x0=*xmi,x1=*xma,loc;
  integer x0k,x0a;
  integer x1k,x1a;
  integer kmin1,kmax1,a1,np1,kmin2,kmax2,a2,np2,kmin,kmax,a,np;
  decompInf(x0,&x0k,&x0a,*b);
  decompSup(x1,&x1k,&x1a,*b);
  /** special cases **/
  if ( x1 == 0.0 )     {      x1a= x0a;}
  if ( x0 == 0.0 )     {      x0a= x1a;}
  loc = Min( floor(x0*exp10((double) -x1a)),((double)DMAX));
  kmin1=(int) loc;
  kmax1=x1k;
  np1= Abs(kmax1-kmin1);
  np1= ( np1 < 0 ) ? DMAX : np1;
  if ( np1 > 10 )
    {
      if  ((np1 % 2) == 0) 
	np1 /=2;
      else 
	{
	  np1++; np1 /= 2;
	  kmax1++;
	}
    }
  a1=x1a;
  /* fprintf(stderr,"\t\tsols : [%d,%d].10^%d,n=%d\t",kmin1,kmax1,a1,np1);  */
  kmin2=x0k;
  loc = Min( ceil( x1*exp10((double) -x0a)),((double)DMAX));
  kmax2=(int) loc ;
  np2 = Abs(kmax2-kmin2);
  np2= ( np2 < 0 ) ? DMAX : np2;
  if ( np2 > 10 ) 
    {
      if ( np2 % 2 == 0)
	np2 /=2;
      else 
	{
	  np2++;
	  kmin2--;
	}
    }
  a2=x0a;
  /* fprintf(stderr,"[%d,%d].10^%d=%d\n",kmin2,kmax2,a2,np2);  */
  if ( np1*exp10((double)a1) < np2*exp10((double) a2) )
    {
      if ( np1 <= 20 ) 
	{
	  kmin=kmin1;	  kmax=kmax1;	  np=np1;	  a=a1;
	}
      else 
	{
	  kmin=kmin2;	  kmax=kmax2;	  np=np2;	  a=a2;
	}
    }
  else 
    {
      if ( np2 <= 20 ) 
	{
	  kmin=kmin2;	  kmax=kmax2;	  np=np2;	  a=a2;
	}
      else 
	{
	  kmin=kmin1;	  kmax=kmax1;	  np=np1;	  a=a1;
	}
    }
  *kminr=kmin;
  *kmaxr=kmax;
  *ar=a;
  *npr=np;
  if ( kmin==kmax ) 
    {
      /* 
       * a la precision demandee les deux [xi,xa] est reduit a un point
       * on elargit l'intervalle
       */
      /* fprintf(stderr,"Arg : kmin=kmax=%d",kmin) ; */
      /* fprintf(stderr," a=%d, x0=%f,x1=%f\n",a,x0,x1); */
      (*kminr)-- ; (*kmaxr)++;*npr=2;
    };
}

/*
 * soit x > 0 reel fixe et b entier fixe : alors il existe un unique couple 
 * (k,a) dans NxZ avec k dans [10^(b-1)+1,10^b] tel que 
 * (k-1)*10^a < x <= k 10^a 
 * donne par  a = ceil(log10(x))-b et k=ceil(x/10^a) 
 * decompSup renvoit xk=k et xa=a
 * si x < 0 alors decompSup(x,xk,xa,b) 
 *    s'obtient par decompInf(-x,xk,xa,b) et xk=-xk 
 * Remarque : la taille de l'entier k obtenu est controle par b 
 * il faut choisir b < 10 pour ne pas depasser dans k l'entier maximum
 */

static void decompSup(x, xk, xa, b)
     double x;
     integer *xk;
     integer *xa;
     integer b;
{
  if ( x == 0.0 ) 
    { 
      *xk=0 ; *xa= 1; /* jpc */
    }
  else 
    {
      if ( x > 0 ) 
	{
	  *xa = (int) ceil(log10(x)) - b ;
	  *xk = (int) ceil(x/exp10((double) *xa));
	}
      else 
	{
	  decompInf(-x,xk,xa,b);
	  *xk = -(*xk);
	}
    }
}
 

/*
 * soit x > 0 alors il exsite un unique couple 
 * (k,a) dans NxZ avec k in [10^(b-1),10^b-1] tel que 
 * (k)*10^a <= x < k+1 10^a 
 * donne par 

 * a = floor(log10(x))-b+1 et k = floor(x/10^a) 
 * decompInf renvoit xk=k et xa=a
 * si x < 0 alors decompInf(x,xk,xa,b) 
 *    s'obtient par decompSup(-x,xk,xa,b) et xk=-xk 
 */

static void decompInf(x, xk, xa, b)
     double x;
     integer *xk;
     integer *xa;
     integer b;
{
  if ( x == 0.0 ) 
    { 
      *xk=0 ; *xa= 1; /* jpc */
    }
  else 
    {
      if ( x > 0 ) 
	{
	  *xa = (int) floor(log10(x)) -b +1 ;
	  *xk = (int) floor(x/exp10((double) *xa));
	}
      else 
	{
	  decompSup(-x,xk,xa,b);
	  *xk = -(*xk);
	}
    }
}
 

#ifdef TEST 


main() 
{
  double xmin=1.0,xmax=1.0,eps=1.e-10,xi,xa;
  integer n1,n2,n,i;
  int kminr,kmaxr,ar;
  xmin=0.0;
  xmax=1.006;
  C2F(graduate)(&xmin,&xmax,&xi,&xa,&n1,&n2,&kminr,&kmaxr,&ar) ;
  fprintf(stderr,"test, [%f,%f,%d,%d]\n",xi,xa,n1,n2); 
}

C2F(dr)() {} ;

#endif