File: matdsc.f

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (429 lines) | stat: -rw-r--r-- 10,282 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
      subroutine matdsc
C ====================================================================
C
C     evaluate functions involving   eigenvalues and eigenvectors
C
C ====================================================================
C
c     Copyright INRIA
      include '../stack.h'
C
      double precision sr,si,powr,powi,t,rmax,eps,tt(1,1)
      logical herm,vect,fail
C
      sadr(l) = (l/2) + 1
      iadr(l) = l + l - 1
C
      if (ddt .eq. 4) then
        write (buf(1:4),'(i4)') fin
        call basout(io,wte,' matdsc '//buf(1:4))
      endif
C
C     functions/fin
C     1       2       3       4       5       6      
C 0 hess    schur  spectre  blocdia         balanc
C
      if (top+lhs-rhs .ge. bot) then
        call error(18)
        return
      endif
      if (rhs .le. 0) then
        call error(39)
        return
      endif
C
      if (istk(iadr(lstk(top+1-rhs))) .ne. 1) then
         if(fin.eq.1) then
            call putfunnam('hess',top-rhs+1)
         elseif(fin.eq.2) then
            call putfunnam('schur',top-rhs+1)
         elseif(fin.eq.3) then
            call putfunnam('spec',top-rhs+1)
         elseif(fin.eq.4) then
            call putfunnam('bdiag',top-rhs+1)
         elseif(fin.eq.6) then
            call putfunnam('balanc',top-rhs+1)
         else
            err = 1
            call error(53)
            return
         endif
         fun=-1
         return
      endif
C
      lw = lstk(top+1)
      eps = stk(leps)
C
      if (fin .eq. 6) goto 310
C
      if (fin.eq.2 .and. rhs.eq.2) then
        call error(43)
        return
      endif
C
      vect = (lhs.eq.2.and.fin.ne.3)
      it2 = 0
      if (rhs .eq. 1) goto 5
      if (rhs.lt.1.or.rhs.gt.2.or.fin.ne.2.and.fin.ne.4) then 
         call error(39)
         return
      endif
      il = iadr(lstk(top))
      if (istk(il+1)*istk(il+2) .ne. 1) then
        call error(30)
        return
      endif
      l = sadr(il+4)
      it2 = istk(il+3)
      powi = 0.0d+0
      powr = stk(l)
      if (it2 .eq. 1) powi = stk(l+1)
      top = top - 1
 5    continue
C acquisition des parametre de la matrice
      il = iadr(lstk(top))
      m = istk(il+1)
      n = istk(il+2)
      l = sadr(il+4)
      mn = m * n
      if (mn .ne. 0) goto 6
C
C     matrice de taille nulle
C
      if (fin.ne.3 .or. lhs.gt.1) then
        err = 1
        call error(89)
        return
      endif
      return
C
 6    continue
C
C
C test si la matrice est carree
      ld = l
      if (m .ne. n) then
        err = 1
        call error(20)
        return
      endif
      nn = n * n
      if (fin .eq. 4) goto 200
C
C decomposition spectrale de la matrice
C
C la matrice est-elle symetrique?
      herm = .false.
      if (n .eq. 1) goto 21
      do 20 j = 2,n
        j1 = j - 1
        do 20 i = 1,j1
          ls = l + (i-1) + j1*n
          ll = l + (i-1)*n + j1
          sr = abs(stk(ll)-stk(ls))
          si = abs(stk(ll+nn)+stk(ls+nn))
          if (stk(ll)+sr.gt.stk(ll) .or. stk(ll+nn)+si.gt.stk(ll+nn))
     &      goto 23
 20   continue
 21   do 22 j = 1,n
        ll = l + (j-1) + (j-1)*n
        if (stk(ll)+abs(stk(ll+nn)) .gt. stk(ll)) goto 23
 22   continue
      herm = .true.
 23   continue
      if (herm) goto 100
      if (fin .gt. 3) goto 900
C
C equilibrage
      low = 1
      igh = n
      if (fin .ne. 3) goto 24
      lw = l + nn + nn
      err = lw + n - lstk(bot)
      if (err .gt. 0) then
        call error(17)
        return
      endif
      call cbal(n,n,stk(l),stk(l+nn),low,igh,stk(lw))
C
C calcul de la forme de hessenberg
 24   lv = l
      if (vect) l = lstk(top+1)
      if (lhs .eq. 1) goto 25
C on cree une nouvelle variable
      top = top + 1
      il = iadr(lstk(top))
      istk(il) = 1
      istk(il+1) = n
      istk(il+2) = n
      istk(il+3) = 1
      l = sadr(il+4)
      lstk(top+1) = l + nn*2
 25   continue
      lw = l + nn*2
      err = lw + n*2 - lstk(bot)
      if (err .gt. 0) then
        call error(17)
        return
      endif
      if (vect) call dcopy(nn*2,stk(lv),1,stk(l),1)
      call corth(n,n,low,igh,stk(l),stk(l+nn),stk(lw),stk(lw+n))
      if (vect)
     &  call cortr(n,n,low,igh,stk(l),stk(l+nn),stk(lw),stk(lw+n),
     &             stk(lv),stk(lv+nn))
      if (fin .ne. 1) goto 40
C fin hess
      if (n .lt. 3) goto 31
      do 30 j = 3,n
        call dset(j-2,0.0d+0,stk(l+j-1),n)
 30   call dset(j-2,0.0d+0,stk(l+nn+j-1),n)
 31   continue
      goto 999
C
C calcul de la forme de schur
 40   job = 0
      if (vect) job = 1
      lsr = lw
      lsi = lw
      if (fin.eq.2 .or. fin.eq.3) job = job + 10
      lsi = lsr + n
      err = lsi + n - lstk(bot)
      if (err .gt. 0) then
        call error(17)
        return
      endif
      call comqr3(n,n,low,igh,stk(l),stk(l+nn),stk(lsr),stk(lsi),
     &            stk(lv),stk(lv+nn),ierr,job)
      if (ierr .gt. 1) call msgs(2,ierr)
C
      if (fin .eq. 3) goto 44
C
C fin schur
      if (n .lt. 2) goto 999
      do 42 i = 2,n
        call dset(i-1,0.0d+0,stk(l-1+i),n)
        call dset(i-1,0.0d+0,stk(l+nn-1+i),n)
 42   continue
      goto 999
C
 44   continue
C fin spectre et root
      call dcopy(2*n,stk(lsr),1,stk(l),1)
      istk(il+1) = n
      istk(il+2) = 1
      istk(il+3) = 1
      lstk(top+1) = l + 2*n
      goto 999
C
C fin cas general
C cas d'une matrice hermitienne
 100  continue
C calcul de la forme de hessenberg(tridagonale)
      lv = l
      if (vect) l = lstk(top+1)
      if (lhs .eq. 1) goto 108
C     on cree une nouvelle variable
      top = top + 1
      il = iadr(lstk(top))
      istk(il) = 1
      istk(il+1) = n
      istk(il+2) = n
      l = sadr(il+4)
      istk(il+3) = 0
      lstk(top+1) = l + n*n
 108  continue
      ld = l + nn*2
      le = ld + n
      le2 = le + n
      lw = le2 + n
      err = lw + 2*n - lstk(bot)
      if (err .gt. 0) then
        call error(17)
        return
      endif
      if (vect) call dcopy(nn*2,stk(lv),1,stk(l),1)
      call htridi(n,n,stk(l),stk(l+nn),stk(ld),stk(le),stk(le2),stk(lw))
      if (fin .ne. 1) goto 120
C fin hess
      if (.not. vect) goto 109
      call dset(nn,0.0d+0,stk(lv),1)
      call dset(n,1.0d+0,stk(lv),n+1)
      call htribk(n,n,stk(l),stk(l+nn),stk(lw),n,stk(lv),stk(lv+nn))
 109  istk(il+3) = 0
      lstk(top+1) = l + nn
      call dset(nn,0.0d+0,stk(l),1)
      call dcopy(n,stk(ld),1,stk(l),n+1)
      if (n .le. 1) goto 999
      call dcopy(n-1,stk(le+1),1,stk(l+1),n+1)
      call dcopy(n-1,stk(le+1),1,stk(l+n),n+1)
      goto 999
C
C calcul de la forme diagonale
 120  continue
      job = 0
      if (.not. vect) goto 121
      job = 1
      call dset(nn,0.0d+0,stk(lv),1)
      call dset(n,1.0d+0,stk(lv),n+1)
 121  continue
      if (vect) job = 1
      call imtql3(n,n,stk(ld),stk(le),stk(lv),ierr,job)
      if (ierr .gt. 1) call msgs(2,ierr)
      if (vect)
     &  call htribk(n,n,stk(l),stk(l+nn),stk(lw),n,stk(lv),stk(lv+nn))
      mn = n
C
      if (fin .eq. 3) goto 123
C
C fin schur et jordan
      call dset(nn,0.0d+0,stk(l),1)
      call dcopy(n,stk(ld),1,stk(l),n+1)
      istk(il+3) = 0
      lstk(top+1) = l + nn
      goto 999
C
 123  continue
C fin spectre
      if (lhs .ne. 1) then
        call error(41)
        return
      endif
      call dcopy(n,stk(ld),1,stk(l),1)
      istk(il+1) = n
      istk(il+2) = 1
      istk(il+3) = 0
      lstk(top+1) = l + n
      goto 999
C
C bloc diagonalisation
C
 200  continue
      if (rhs .gt. 2) then
        call error(39)
        return
      endif
      if (rhs .eq. 1) goto 201
C     rmax est en argument
      rmax = powr
      if (powi .ne. 0.0d+0) then
        err = 2
        call error(52)
        return
      endif
      goto 202
C   calcul de rmax par defaut:norme l1
 201  rmax = 0.0d+0
      lj = l - 1
      do 203 j = 1,n
        t = 0.0d+0
        do 204 i = 1,n
          t = t + abs(stk(lj+i)) + abs(stk(lj+nn+i))
 204    continue
        if (t .gt. rmax) rmax = t
        lj = lj + n
 203  continue
 202  continue
C     preparation de la pile
      top = top + 1
C
C     changement de base
      ilx = iadr(lstk(top))
      istk(ilx) = 1
      istk(ilx+1) = n
      istk(ilx+2) = n
      istk(ilx+3) = 1
      lx = sadr(ilx+4)
      lstk(top+1) = lx + 2*nn
C    structure des blocs
      top = top + 1
      ilbs = iadr(lstk(top))
      lbs = sadr(ilbs+4)
      illbs = ilbs + 4
C    er,ei:valeurs propres (tbl de travail)
      ler = lbs + n
      lei = ler + n
      ilb = iadr(lei+n)
      lw = sadr(ilb+n)
      err = lw + n - lstk(bot)
      if (err .gt. 0) then
        call error(17)
        return
      endif
      call wbdiag(n,n,stk(l),stk(l+nn),rmax,stk(ler),stk(lei),istk(ilb),
     &            stk(lx),stk(lx+nn),tt,tt,stk(lw),0,fail)
C     sorties
C   structure des blocs
      nbloc = 0
      ln = lbs - 1
      do 222 k = 1,n
        if (istk(ilb+k-1) .lt. 0) goto 222
        nbloc = nbloc + 1
        ln = ln + 1
        stk(ln) = dble(istk(ilb+k-1))
 222  continue
      lstk(top+1) = sadr(ilbs+4) + nbloc
      istk(ilbs) = 1
      istk(ilbs+1) = nbloc
      istk(ilbs+2) = 1
      istk(ilbs+3) = 0
      if (lhs .eq. 2) top = top - 1
      if (lhs .eq. 1) top = top - 2
      goto 999
C
C equilibrage (balanc)
C
 310  continue
      if (lhs .ne. 2) then
        call error(41)
        return
      endif
      if (rhs .ne. 1) then
        call error(42)
        return
      endif
      il = iadr(lstk(top))
      m = istk(il+1)
      n = istk(il+2)
      it = istk(il+3)
      l = sadr(il+4)
C     test si la matrice est carree
      if (m .ne. n) then
        err = 1
        call error(20)
        return
      endif
      nn = n * n
      if (nn .eq. 0) then
        err = 1
        call error(89)
        return
      endif
C     equilibrage
      low = 1
      igh = n
      ilv = iadr(lw)
      lv = sadr(ilv+4)
      lw = lv + nn
      err = lw + n - lstk(bot)
      if (err .gt. 0) then
        call error(17)
        return
      endif
      call cbal(n,n,stk(l),stk(l+nn),low,igh,stk(lw))
      call dset(nn,0.0d+0,stk(lv),1)
      call dset(n,1.0d+0,stk(lv),n+1)
      call balbak(n,n,low,igh,stk(lw),n,stk(lv))
      istk(ilv) = 1
      istk(ilv+1) = n
      istk(ilv+2) = n
      istk(ilv+3) = 0
      top = top + 1
      lstk(top+1) = lv + nn
      goto 999
C
 999  return
 900  call error(43)
      return
      end