1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
|
subroutine matdsc
C ====================================================================
C
C evaluate functions involving eigenvalues and eigenvectors
C
C ====================================================================
C
c Copyright INRIA
include '../stack.h'
C
double precision sr,si,powr,powi,t,rmax,eps,tt(1,1)
logical herm,vect,fail
C
sadr(l) = (l/2) + 1
iadr(l) = l + l - 1
C
if (ddt .eq. 4) then
write (buf(1:4),'(i4)') fin
call basout(io,wte,' matdsc '//buf(1:4))
endif
C
C functions/fin
C 1 2 3 4 5 6
C 0 hess schur spectre blocdia balanc
C
if (top+lhs-rhs .ge. bot) then
call error(18)
return
endif
if (rhs .le. 0) then
call error(39)
return
endif
C
if (istk(iadr(lstk(top+1-rhs))) .ne. 1) then
if(fin.eq.1) then
call putfunnam('hess',top-rhs+1)
elseif(fin.eq.2) then
call putfunnam('schur',top-rhs+1)
elseif(fin.eq.3) then
call putfunnam('spec',top-rhs+1)
elseif(fin.eq.4) then
call putfunnam('bdiag',top-rhs+1)
elseif(fin.eq.6) then
call putfunnam('balanc',top-rhs+1)
else
err = 1
call error(53)
return
endif
fun=-1
return
endif
C
lw = lstk(top+1)
eps = stk(leps)
C
if (fin .eq. 6) goto 310
C
if (fin.eq.2 .and. rhs.eq.2) then
call error(43)
return
endif
C
vect = (lhs.eq.2.and.fin.ne.3)
it2 = 0
if (rhs .eq. 1) goto 5
if (rhs.lt.1.or.rhs.gt.2.or.fin.ne.2.and.fin.ne.4) then
call error(39)
return
endif
il = iadr(lstk(top))
if (istk(il+1)*istk(il+2) .ne. 1) then
call error(30)
return
endif
l = sadr(il+4)
it2 = istk(il+3)
powi = 0.0d+0
powr = stk(l)
if (it2 .eq. 1) powi = stk(l+1)
top = top - 1
5 continue
C acquisition des parametre de la matrice
il = iadr(lstk(top))
m = istk(il+1)
n = istk(il+2)
l = sadr(il+4)
mn = m * n
if (mn .ne. 0) goto 6
C
C matrice de taille nulle
C
if (fin.ne.3 .or. lhs.gt.1) then
err = 1
call error(89)
return
endif
return
C
6 continue
C
C
C test si la matrice est carree
ld = l
if (m .ne. n) then
err = 1
call error(20)
return
endif
nn = n * n
if (fin .eq. 4) goto 200
C
C decomposition spectrale de la matrice
C
C la matrice est-elle symetrique?
herm = .false.
if (n .eq. 1) goto 21
do 20 j = 2,n
j1 = j - 1
do 20 i = 1,j1
ls = l + (i-1) + j1*n
ll = l + (i-1)*n + j1
sr = abs(stk(ll)-stk(ls))
si = abs(stk(ll+nn)+stk(ls+nn))
if (stk(ll)+sr.gt.stk(ll) .or. stk(ll+nn)+si.gt.stk(ll+nn))
& goto 23
20 continue
21 do 22 j = 1,n
ll = l + (j-1) + (j-1)*n
if (stk(ll)+abs(stk(ll+nn)) .gt. stk(ll)) goto 23
22 continue
herm = .true.
23 continue
if (herm) goto 100
if (fin .gt. 3) goto 900
C
C equilibrage
low = 1
igh = n
if (fin .ne. 3) goto 24
lw = l + nn + nn
err = lw + n - lstk(bot)
if (err .gt. 0) then
call error(17)
return
endif
call cbal(n,n,stk(l),stk(l+nn),low,igh,stk(lw))
C
C calcul de la forme de hessenberg
24 lv = l
if (vect) l = lstk(top+1)
if (lhs .eq. 1) goto 25
C on cree une nouvelle variable
top = top + 1
il = iadr(lstk(top))
istk(il) = 1
istk(il+1) = n
istk(il+2) = n
istk(il+3) = 1
l = sadr(il+4)
lstk(top+1) = l + nn*2
25 continue
lw = l + nn*2
err = lw + n*2 - lstk(bot)
if (err .gt. 0) then
call error(17)
return
endif
if (vect) call dcopy(nn*2,stk(lv),1,stk(l),1)
call corth(n,n,low,igh,stk(l),stk(l+nn),stk(lw),stk(lw+n))
if (vect)
& call cortr(n,n,low,igh,stk(l),stk(l+nn),stk(lw),stk(lw+n),
& stk(lv),stk(lv+nn))
if (fin .ne. 1) goto 40
C fin hess
if (n .lt. 3) goto 31
do 30 j = 3,n
call dset(j-2,0.0d+0,stk(l+j-1),n)
30 call dset(j-2,0.0d+0,stk(l+nn+j-1),n)
31 continue
goto 999
C
C calcul de la forme de schur
40 job = 0
if (vect) job = 1
lsr = lw
lsi = lw
if (fin.eq.2 .or. fin.eq.3) job = job + 10
lsi = lsr + n
err = lsi + n - lstk(bot)
if (err .gt. 0) then
call error(17)
return
endif
call comqr3(n,n,low,igh,stk(l),stk(l+nn),stk(lsr),stk(lsi),
& stk(lv),stk(lv+nn),ierr,job)
if (ierr .gt. 1) call msgs(2,ierr)
C
if (fin .eq. 3) goto 44
C
C fin schur
if (n .lt. 2) goto 999
do 42 i = 2,n
call dset(i-1,0.0d+0,stk(l-1+i),n)
call dset(i-1,0.0d+0,stk(l+nn-1+i),n)
42 continue
goto 999
C
44 continue
C fin spectre et root
call dcopy(2*n,stk(lsr),1,stk(l),1)
istk(il+1) = n
istk(il+2) = 1
istk(il+3) = 1
lstk(top+1) = l + 2*n
goto 999
C
C fin cas general
C cas d'une matrice hermitienne
100 continue
C calcul de la forme de hessenberg(tridagonale)
lv = l
if (vect) l = lstk(top+1)
if (lhs .eq. 1) goto 108
C on cree une nouvelle variable
top = top + 1
il = iadr(lstk(top))
istk(il) = 1
istk(il+1) = n
istk(il+2) = n
l = sadr(il+4)
istk(il+3) = 0
lstk(top+1) = l + n*n
108 continue
ld = l + nn*2
le = ld + n
le2 = le + n
lw = le2 + n
err = lw + 2*n - lstk(bot)
if (err .gt. 0) then
call error(17)
return
endif
if (vect) call dcopy(nn*2,stk(lv),1,stk(l),1)
call htridi(n,n,stk(l),stk(l+nn),stk(ld),stk(le),stk(le2),stk(lw))
if (fin .ne. 1) goto 120
C fin hess
if (.not. vect) goto 109
call dset(nn,0.0d+0,stk(lv),1)
call dset(n,1.0d+0,stk(lv),n+1)
call htribk(n,n,stk(l),stk(l+nn),stk(lw),n,stk(lv),stk(lv+nn))
109 istk(il+3) = 0
lstk(top+1) = l + nn
call dset(nn,0.0d+0,stk(l),1)
call dcopy(n,stk(ld),1,stk(l),n+1)
if (n .le. 1) goto 999
call dcopy(n-1,stk(le+1),1,stk(l+1),n+1)
call dcopy(n-1,stk(le+1),1,stk(l+n),n+1)
goto 999
C
C calcul de la forme diagonale
120 continue
job = 0
if (.not. vect) goto 121
job = 1
call dset(nn,0.0d+0,stk(lv),1)
call dset(n,1.0d+0,stk(lv),n+1)
121 continue
if (vect) job = 1
call imtql3(n,n,stk(ld),stk(le),stk(lv),ierr,job)
if (ierr .gt. 1) call msgs(2,ierr)
if (vect)
& call htribk(n,n,stk(l),stk(l+nn),stk(lw),n,stk(lv),stk(lv+nn))
mn = n
C
if (fin .eq. 3) goto 123
C
C fin schur et jordan
call dset(nn,0.0d+0,stk(l),1)
call dcopy(n,stk(ld),1,stk(l),n+1)
istk(il+3) = 0
lstk(top+1) = l + nn
goto 999
C
123 continue
C fin spectre
if (lhs .ne. 1) then
call error(41)
return
endif
call dcopy(n,stk(ld),1,stk(l),1)
istk(il+1) = n
istk(il+2) = 1
istk(il+3) = 0
lstk(top+1) = l + n
goto 999
C
C bloc diagonalisation
C
200 continue
if (rhs .gt. 2) then
call error(39)
return
endif
if (rhs .eq. 1) goto 201
C rmax est en argument
rmax = powr
if (powi .ne. 0.0d+0) then
err = 2
call error(52)
return
endif
goto 202
C calcul de rmax par defaut:norme l1
201 rmax = 0.0d+0
lj = l - 1
do 203 j = 1,n
t = 0.0d+0
do 204 i = 1,n
t = t + abs(stk(lj+i)) + abs(stk(lj+nn+i))
204 continue
if (t .gt. rmax) rmax = t
lj = lj + n
203 continue
202 continue
C preparation de la pile
top = top + 1
C
C changement de base
ilx = iadr(lstk(top))
istk(ilx) = 1
istk(ilx+1) = n
istk(ilx+2) = n
istk(ilx+3) = 1
lx = sadr(ilx+4)
lstk(top+1) = lx + 2*nn
C structure des blocs
top = top + 1
ilbs = iadr(lstk(top))
lbs = sadr(ilbs+4)
illbs = ilbs + 4
C er,ei:valeurs propres (tbl de travail)
ler = lbs + n
lei = ler + n
ilb = iadr(lei+n)
lw = sadr(ilb+n)
err = lw + n - lstk(bot)
if (err .gt. 0) then
call error(17)
return
endif
call wbdiag(n,n,stk(l),stk(l+nn),rmax,stk(ler),stk(lei),istk(ilb),
& stk(lx),stk(lx+nn),tt,tt,stk(lw),0,fail)
C sorties
C structure des blocs
nbloc = 0
ln = lbs - 1
do 222 k = 1,n
if (istk(ilb+k-1) .lt. 0) goto 222
nbloc = nbloc + 1
ln = ln + 1
stk(ln) = dble(istk(ilb+k-1))
222 continue
lstk(top+1) = sadr(ilbs+4) + nbloc
istk(ilbs) = 1
istk(ilbs+1) = nbloc
istk(ilbs+2) = 1
istk(ilbs+3) = 0
if (lhs .eq. 2) top = top - 1
if (lhs .eq. 1) top = top - 2
goto 999
C
C equilibrage (balanc)
C
310 continue
if (lhs .ne. 2) then
call error(41)
return
endif
if (rhs .ne. 1) then
call error(42)
return
endif
il = iadr(lstk(top))
m = istk(il+1)
n = istk(il+2)
it = istk(il+3)
l = sadr(il+4)
C test si la matrice est carree
if (m .ne. n) then
err = 1
call error(20)
return
endif
nn = n * n
if (nn .eq. 0) then
err = 1
call error(89)
return
endif
C equilibrage
low = 1
igh = n
ilv = iadr(lw)
lv = sadr(ilv+4)
lw = lv + nn
err = lw + n - lstk(bot)
if (err .gt. 0) then
call error(17)
return
endif
call cbal(n,n,stk(l),stk(l+nn),low,igh,stk(lw))
call dset(nn,0.0d+0,stk(lv),1)
call dset(n,1.0d+0,stk(lv),n+1)
call balbak(n,n,low,igh,stk(lw),n,stk(lv))
istk(ilv) = 1
istk(ilv+1) = n
istk(ilv+2) = n
istk(ilv+3) = 0
top = top + 1
lstk(top+1) = lv + nn
goto 999
C
999 return
900 call error(43)
return
end
|