File: fprf2.f

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (391 lines) | stat: -rw-r--r-- 10,129 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
      subroutine fprf2(iflag,ntot,nv,io,zero,s2,eps,al,imp,u,eta,mm1,jc,
     &                 ic,r,a,e,rr,xpr,y,w1,w2)
c     Copyright INRIA
      implicit double precision (a-h,o-z)
      common /fprf2c/ u1,nc
C         the dimension is mm1*mm1 for r
      dimension al(ntot), jc(mm1), ic(mm1), a(mm1), e(mm1), r(*),
     &          rr(mm1), xpr(mm1), y(mm1), w1(mm1), w2(mm1)
      dimension i5(1), d3(1), d4(1)
C
C     *****  on entry  *****
C
C       iflag=0-1  initialize on one subgradient (mu in)
C
C       iflag=2    "     "     "     "     "     "     "
C                  and strive to enter by priority the
C                  points of the previous corral at the
C                  beginning of the iterations.
C
C       iflag=3    initialize on the previous projection
C                  (with its corresponding corral)
C
C
C      *****  on exit  *****
C
C                  iflag=0    normal end
C
C                        1    old solution is already optimal
C
C                        2    constraints non feasible
C
C                        3    trying to enter a variable
C                             that is already in the corral
C
C                        4    starting to loop
C
C
C
C
C      imp > 5    one prints final information
C
C
C      imp > 6    one prints information at each iteration
C
C
C      imp > 7    one prints also
C
C                - at each iteration the choleski matrix
C                - and the initial information such as (pi,pj) ...
C
C
C
C
C
C               ****   begin   ****
C
C              prepare various data
C
C
      iterpr = 0
      nt1 = ntot + 1
      itmax = 10 * ntot
      deps = eps
      incr = 0
      k00 = 1
      w1s = 0.d0
      w2s = 0.d0
      w12s = 0.d0
      gama = .99d0
      dzero = 10.d0 * zero
C                     initial printouts
      if (imp .gt. 7) call n1fc1o(io,21,nt1,mm1,i3,i4,i5,deps,d2,a,r)
C
C                     initial point
C
 100  if (iflag .ne. 3) goto 110
      if (imp .gt. 6) call n1fc1o(io,22,nv,i2,i3,i4,jc,d1,d2,d3,d4)
      j0 = nt1
      ps = u1 * (a(nt1)-deps)
      ment = (nt1-1) * mm1
      do 103 k = 1,nv
        jk = ment + jc(k)
 103  ps = ps + xpr(k)*r(jk)
      if (ps .lt. s2) goto 107
      if (imp .gt. 0) call n1fc1o(io,23,i1,i2,i3,i4,i5,d1,d2,d3,d4)
      iflag = 1
      return
 107  nv = nv + 1
      nc = nc + 1
      jc(nv) = j0
      iterpr = 1
      goto 300
 110  if (iflag .le. 1) goto 140
C        save the corral of previous call
      do 120 i = 1,nt1
 120  ic(i) = 0
      do 130 k = 1,nv
        jk = jc(k)
 130  ic(jk) = 1
      ic(nt1) = 1
C           initialize with one feasible gradient
 140  jc(1) = 1
      nv = 2
      nc = 1
      jc(2) = 0
      do 150 j = 2,nt1
        if (a(j) .gt. deps) goto 150
        jc(2) = j
 150  continue
      if (jc(2) .gt. 0) goto 160
      if (imp .gt. 0) call n1fc1o(io,24,i1,i2,i3,i4,i5,d1,d2,d3,d4)
      iflag = 2
      return
 160  j = jc(2)
      rr(1) = 1.d0
      jj = (j-1)*mm1 + j
      ps = 1.d0 + r(jj)
      if (ps .gt. 0.d0) goto 170
      iflag = 3
      return
 170  rr(2) = dsqrt(ps)
      r(2) = a(j)
      do 180 i = 1,nt1
 180  xpr(i) = 0.d0
      xpr(1) = deps - a(j)
      xpr(2) = 1.d0
      u1 = 0.d0
      u2 = -r(jj)
      if (imp .gt. 6) call n1fc1o(io,25,j,i2,i3,i4,i5,d1,d2,d3,d4)
C
C                 stopping criterion
C
 200  iterpr = iterpr + 1
      if (imp .gt. 6) call n1fc1o(io,26,nv,i2,i3,i4,i5,d1,d2,d3,xpr)
      if (iterpr .le. itmax) goto 205
      if (imp .gt. 0) call n1fc1o(io,27,i1,i2,i3,i4,i5,d1,d2,d3,d4)
      iflag = 4
      return
 205  s2 = (-deps)*u1 - u2
      if (s2 .le. eta) goto 900
      sp = gama * s2
C                    first compute all the tests,
C            and test with the corral of previous call
      j0 = 0
      do 220 j = 2,nt1
        ps = u1 * (a(j)-deps)
        do 210 k = 1,nv
          jj = jc(k)
          if (jj .eq. 1) goto 210
          j1 = max0(j,jj)
          j2 = min0(j,jj)
          jj = (j1-1)*mm1 + j2
          ps = ps + xpr(k)*r(jj)
 210    continue
        y(j) = ps
        if (iflag .ne. 2) goto 220
        if (ic(j) .ne. 1) goto 220
        if (ps .ge. sp) goto 220
        j0 = j
        sp = ps
 220  continue
      if (j0 .eq. 0) goto 240
      if (sp .ge. gama*s2) goto 240
      ps1 = dabs(u1*(deps-a(j0)))
      do 230 k = 1,nv
        j = jc(k)
        if (j .eq. j0) goto 240
        if (j .eq. 1) goto 230
        j1 = max0(j0,j)
        j2 = min0(j0,j)
        jj = (j1-1)*mm1 + j2
        ps1 = ps1 + xpr(k)*dabs(u1*(2.d0*deps-a(j))+2.d0*y(j)-r(jj))
 230  continue
      ps1 = ps1 * 1000.d0 * dzero
      if (sp .gt. s2-ps1) goto 240
      ic(j0) = 0
      goto 280
C                     now the remaining ones
 240  j0 = 0
      sp = gama * s2
      do 260 j = 2,nt1
        if (iflag.eq.2 .and. ic(j).eq.1) goto 260
        if (y(j) .ge. sp) goto 260
        sp = y(j)
        j0 = j
 260  continue
      if (j0 .eq. 0) goto 290
      ps1 = dabs(u1*(deps-a(j0)))
      do 270 k = 1,nv
        j = jc(k)
        if (j .eq. 1) goto 270
        j1 = max0(j0,j)
        j2 = min0(j0,j)
        jj = (j1-1)*mm1 + j2
        ps1 = ps1 + xpr(k)*dabs(u1*(2.d0*deps-a(j))+2.d0*y(j)-r(jj))
 270  continue
      ps1 = ps1 * 1000.d0 * dzero
      if (sp .gt. s2-ps1) goto 290
 280  nc = nc + 1
      nv = nv + 1
      jc(nv) = j0
      if (imp .gt. 6) call n1fc1o(io,28,j0,i2,i3,i4,i5,s2,sp,d3,d4)
      goto 300
C         first set of optimality conditions satisfied
 290  if (u1 .ge. (-dble(float(nv)))*dzero) goto 900
      j0 = 1
      nv = nv + 1
      jc(nv) = 1
      if (imp .gt. 6) call n1fc1o(io,29,i1,i2,i3,i4,i5,s2,u1,d3,d4)
C
C               augmenting r
C
 300  nv1 = nv - 1
      do 305 k = 1,nv1
        if (jc(k) .ne. j0) goto 305
        if (imp .gt. 0) call n1fc1o(io,30,j0,i2,i3,i4,i5,d1,d2,d3,d4)
        iflag = 3
        return
 305  continue
      j = jc(1)
      j1 = max0(j,j0)
      j2 = min0(j,j0)
      jj = (j1-1)*mm1 + j2
      r(nv) = (a(j)*a(j0)+e(j)*e(j0)+r(jj)) / rr(1)
      ps0 = r(nv) * r(nv)
      if (nv1 .eq. 1) goto 330
      do 320 k = 2,nv1
        j = jc(k)
        j1 = max0(j,j0)
        j2 = min0(j,j0)
        jj = (j1-1)*mm1 + j2
        ps = a(j)*a(j0) + e(j)*e(j0) + r(jj)
        k1 = k - 1
        do 310 kk = 1,k1
          j1 = (kk-1)*mm1 + k
          j2 = (kk-1)*mm1 + nv
 310    ps = ps - r(j1)*r(j2)
        mek = k1*mm1 + nv
        r(mek) = ps / rr(k)
 320  ps0 = ps0 + r(mek)*r(mek)
      jj = (j0-1)*mm1 + j0
      ps0 = a(j0)*a(j0) + e(j0)*e(j0) + r(jj) - ps0
      if (ps0 .gt. 0.d0) goto 330
      iflag = 3
      return
 330  rr(nv) = dsqrt(ps0)
      if (iterpr .le. 1) goto 400
      incr = 1
      k00 = nv
C
C          solving the corral-system
C
 400  k = k00
      if (k .gt. nv) goto 430
      if (imp .gt. 7) call n1fc1o(io,31,nv,mm1,i3,i4,i5,d1,d2,rr,r)
 410  j = jc(k)
      ps1 = a(j)
      ps2 = e(j)
      if (k .eq. 1) goto 420
      k1 = k - 1
      do 415 kk = 1,k1
        jj = (kk-1)*mm1 + k
        ps0 = r(jj)
        ps1 = ps1 - ps0*w1(kk)
 415  ps2 = ps2 - ps0*w2(kk)
 420  ps0 = rr(k)
      w1(k) = ps1 / ps0
      w2(k) = ps2 / ps0
      k = k + 1
      if (k .le. nv) goto 410
C                two-two system
 430  k = 1
      if (incr .eq. 1) k = nv
 440  w1s = w1s + w1(k)*w1(k)
      w2s = w2s + w2(k)*w2(k)
      w12s = w12s + w1(k)*w2(k)
      k = k + 1
      if (k .le. nv) goto 440
      det = w1s*w2s - w12s*w12s
      ps2 = w2s*deps - w12s
      ps1 = w1s - w12s*deps
 450  v1 = ps2 / det
      v2 = ps1 / det
 460  u1 = deps - v1
      u2 = 1.d0 - v2
      if (nv .eq. nc+1) u1 = 0.d0
C                  backward
      y(nv) = (v1*w1(nv)+v2*w2(nv)) / rr(nv)
      if (nv .eq. 1) goto 500
      do 480 l = 2,nv
        k = nv - l + 1
        k1 = k + 1
        ps = v1*w1(k) + v2*w2(k)
        mek = (k-1) * mm1
        do 470 kk = k1,nv
          mej = mek + kk
 470    ps = ps - r(mej)*y(kk)
 480  y(k) = ps / rr(k)
C
C                test for positivity
C
 500  continue
      do 530 k = 1,nv
        if (y(k) .le. 0.d0) goto 550
 530  continue
      do 540 k = 1,nv
 540  xpr(k) = y(k)
      goto 200
C           interpolating between x and y
 550  teta = 0.d0
      k0 = k
      do 560 k = 1,nv
        if (y(k) .ge. 0.d0) goto 560
        ps = y(k) / (y(k)-xpr(k))
        if (teta .ge. ps) goto 560
        teta = ps
        k0 = k
 560  continue
      do 570 k = 1,nv
        ps = teta*xpr(k) + (1.d0-teta)*y(k)
        if (ps .le. dzero) ps = 0.d0
 570  xpr(k) = ps
      if (imp .le. 6) goto 600
      ps1 = 0.d0
      ps2 = 0.d0
      do 580 k = 1,nv
        do 580 kk = 1,nv
          j1 = max0(jc(k),jc(kk))
          j2 = min0(jc(k),jc(kk))
          jj = (j1-1)*mm1 + j2
          ps1 = ps1 + xpr(k)*xpr(kk)*r(jj)
          ps2 = ps2 + y(k)*y(kk)*r(jj)
 580  continue
C
C                  compressing the corral
C
 600  nv = nv - 1
      incr = 0
      k00 = k0
      w1s = 0.d0
      w2s = 0.d0
      w12s = 0.d0
      l = jc(k0)
      if (l .ne. 1) nc = nc - 1
      if (imp .gt. 6) call n1fc1o(io,32,k0,l,i3,i4,i5,y(k0),ps1,ps2,d4)
      if (k0 .gt. nv) goto 400
      k1 = k0 - 1
      do 620 k = k0,nv
        xpr(k) = xpr(k+1)
        if (k0 .eq. 1) goto 620
        do 610 kk = 1,k1
          mek = (kk-1)*mm1 + k
 610    r(mek) = r(mek+1)
 620  jc(k) = jc(k+1)
      xpr(nv+1) = 0.d0
 630  mek = (k0-1)*mm1 + k0 + 1
      ps = r(mek)
      ps12 = rr(k0+1)
      ps0 = dsqrt(ps*ps+ps12*ps12)
      ps = ps / ps0
      ps12 = ps12 / ps0
      rr(k0) = ps0
      if (k0 .eq. nv) goto 400
      k1 = k0 + 1
      mek01 = (k0-1) * mm1
      mek = k0 * mm1
      mekk = mek - mm1
      do 640 k = k1,nv
        j1 = mekk + k
        j2 = mek + k
        r(j1) = ps*r(j1+1) + ps12*r(j2+1)
        if (k .gt. k1) r(j2) = ps2
 640  ps2 = (-ps12)*r(j1+1) + ps*r(j2+1)
      r(j2+1) = ps2
      k0 = k0 + 1
      goto 630
C
C                      *** finished ***
C
 900  iflag = 0
      do 930 j = 1,ntot
 930  al(j) = 0.
      do 940 k = 1,nv
        j = jc(k) - 1
        if (j .ne. 0) al(j) = xpr(k)
 940  continue
      u = u1
      if (imp .le. 5) return
      call n1fc1o(io,34,nc,nv,i3,i4,jc,s2,sp,u1,d4)
      return
      end