1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
|
subroutine fprf2(iflag,ntot,nv,io,zero,s2,eps,al,imp,u,eta,mm1,jc,
& ic,r,a,e,rr,xpr,y,w1,w2)
c Copyright INRIA
implicit double precision (a-h,o-z)
common /fprf2c/ u1,nc
C the dimension is mm1*mm1 for r
dimension al(ntot), jc(mm1), ic(mm1), a(mm1), e(mm1), r(*),
& rr(mm1), xpr(mm1), y(mm1), w1(mm1), w2(mm1)
dimension i5(1), d3(1), d4(1)
C
C ***** on entry *****
C
C iflag=0-1 initialize on one subgradient (mu in)
C
C iflag=2 " " " " " " "
C and strive to enter by priority the
C points of the previous corral at the
C beginning of the iterations.
C
C iflag=3 initialize on the previous projection
C (with its corresponding corral)
C
C
C ***** on exit *****
C
C iflag=0 normal end
C
C 1 old solution is already optimal
C
C 2 constraints non feasible
C
C 3 trying to enter a variable
C that is already in the corral
C
C 4 starting to loop
C
C
C
C
C imp > 5 one prints final information
C
C
C imp > 6 one prints information at each iteration
C
C
C imp > 7 one prints also
C
C - at each iteration the choleski matrix
C - and the initial information such as (pi,pj) ...
C
C
C
C
C
C **** begin ****
C
C prepare various data
C
C
iterpr = 0
nt1 = ntot + 1
itmax = 10 * ntot
deps = eps
incr = 0
k00 = 1
w1s = 0.d0
w2s = 0.d0
w12s = 0.d0
gama = .99d0
dzero = 10.d0 * zero
C initial printouts
if (imp .gt. 7) call n1fc1o(io,21,nt1,mm1,i3,i4,i5,deps,d2,a,r)
C
C initial point
C
100 if (iflag .ne. 3) goto 110
if (imp .gt. 6) call n1fc1o(io,22,nv,i2,i3,i4,jc,d1,d2,d3,d4)
j0 = nt1
ps = u1 * (a(nt1)-deps)
ment = (nt1-1) * mm1
do 103 k = 1,nv
jk = ment + jc(k)
103 ps = ps + xpr(k)*r(jk)
if (ps .lt. s2) goto 107
if (imp .gt. 0) call n1fc1o(io,23,i1,i2,i3,i4,i5,d1,d2,d3,d4)
iflag = 1
return
107 nv = nv + 1
nc = nc + 1
jc(nv) = j0
iterpr = 1
goto 300
110 if (iflag .le. 1) goto 140
C save the corral of previous call
do 120 i = 1,nt1
120 ic(i) = 0
do 130 k = 1,nv
jk = jc(k)
130 ic(jk) = 1
ic(nt1) = 1
C initialize with one feasible gradient
140 jc(1) = 1
nv = 2
nc = 1
jc(2) = 0
do 150 j = 2,nt1
if (a(j) .gt. deps) goto 150
jc(2) = j
150 continue
if (jc(2) .gt. 0) goto 160
if (imp .gt. 0) call n1fc1o(io,24,i1,i2,i3,i4,i5,d1,d2,d3,d4)
iflag = 2
return
160 j = jc(2)
rr(1) = 1.d0
jj = (j-1)*mm1 + j
ps = 1.d0 + r(jj)
if (ps .gt. 0.d0) goto 170
iflag = 3
return
170 rr(2) = dsqrt(ps)
r(2) = a(j)
do 180 i = 1,nt1
180 xpr(i) = 0.d0
xpr(1) = deps - a(j)
xpr(2) = 1.d0
u1 = 0.d0
u2 = -r(jj)
if (imp .gt. 6) call n1fc1o(io,25,j,i2,i3,i4,i5,d1,d2,d3,d4)
C
C stopping criterion
C
200 iterpr = iterpr + 1
if (imp .gt. 6) call n1fc1o(io,26,nv,i2,i3,i4,i5,d1,d2,d3,xpr)
if (iterpr .le. itmax) goto 205
if (imp .gt. 0) call n1fc1o(io,27,i1,i2,i3,i4,i5,d1,d2,d3,d4)
iflag = 4
return
205 s2 = (-deps)*u1 - u2
if (s2 .le. eta) goto 900
sp = gama * s2
C first compute all the tests,
C and test with the corral of previous call
j0 = 0
do 220 j = 2,nt1
ps = u1 * (a(j)-deps)
do 210 k = 1,nv
jj = jc(k)
if (jj .eq. 1) goto 210
j1 = max0(j,jj)
j2 = min0(j,jj)
jj = (j1-1)*mm1 + j2
ps = ps + xpr(k)*r(jj)
210 continue
y(j) = ps
if (iflag .ne. 2) goto 220
if (ic(j) .ne. 1) goto 220
if (ps .ge. sp) goto 220
j0 = j
sp = ps
220 continue
if (j0 .eq. 0) goto 240
if (sp .ge. gama*s2) goto 240
ps1 = dabs(u1*(deps-a(j0)))
do 230 k = 1,nv
j = jc(k)
if (j .eq. j0) goto 240
if (j .eq. 1) goto 230
j1 = max0(j0,j)
j2 = min0(j0,j)
jj = (j1-1)*mm1 + j2
ps1 = ps1 + xpr(k)*dabs(u1*(2.d0*deps-a(j))+2.d0*y(j)-r(jj))
230 continue
ps1 = ps1 * 1000.d0 * dzero
if (sp .gt. s2-ps1) goto 240
ic(j0) = 0
goto 280
C now the remaining ones
240 j0 = 0
sp = gama * s2
do 260 j = 2,nt1
if (iflag.eq.2 .and. ic(j).eq.1) goto 260
if (y(j) .ge. sp) goto 260
sp = y(j)
j0 = j
260 continue
if (j0 .eq. 0) goto 290
ps1 = dabs(u1*(deps-a(j0)))
do 270 k = 1,nv
j = jc(k)
if (j .eq. 1) goto 270
j1 = max0(j0,j)
j2 = min0(j0,j)
jj = (j1-1)*mm1 + j2
ps1 = ps1 + xpr(k)*dabs(u1*(2.d0*deps-a(j))+2.d0*y(j)-r(jj))
270 continue
ps1 = ps1 * 1000.d0 * dzero
if (sp .gt. s2-ps1) goto 290
280 nc = nc + 1
nv = nv + 1
jc(nv) = j0
if (imp .gt. 6) call n1fc1o(io,28,j0,i2,i3,i4,i5,s2,sp,d3,d4)
goto 300
C first set of optimality conditions satisfied
290 if (u1 .ge. (-dble(float(nv)))*dzero) goto 900
j0 = 1
nv = nv + 1
jc(nv) = 1
if (imp .gt. 6) call n1fc1o(io,29,i1,i2,i3,i4,i5,s2,u1,d3,d4)
C
C augmenting r
C
300 nv1 = nv - 1
do 305 k = 1,nv1
if (jc(k) .ne. j0) goto 305
if (imp .gt. 0) call n1fc1o(io,30,j0,i2,i3,i4,i5,d1,d2,d3,d4)
iflag = 3
return
305 continue
j = jc(1)
j1 = max0(j,j0)
j2 = min0(j,j0)
jj = (j1-1)*mm1 + j2
r(nv) = (a(j)*a(j0)+e(j)*e(j0)+r(jj)) / rr(1)
ps0 = r(nv) * r(nv)
if (nv1 .eq. 1) goto 330
do 320 k = 2,nv1
j = jc(k)
j1 = max0(j,j0)
j2 = min0(j,j0)
jj = (j1-1)*mm1 + j2
ps = a(j)*a(j0) + e(j)*e(j0) + r(jj)
k1 = k - 1
do 310 kk = 1,k1
j1 = (kk-1)*mm1 + k
j2 = (kk-1)*mm1 + nv
310 ps = ps - r(j1)*r(j2)
mek = k1*mm1 + nv
r(mek) = ps / rr(k)
320 ps0 = ps0 + r(mek)*r(mek)
jj = (j0-1)*mm1 + j0
ps0 = a(j0)*a(j0) + e(j0)*e(j0) + r(jj) - ps0
if (ps0 .gt. 0.d0) goto 330
iflag = 3
return
330 rr(nv) = dsqrt(ps0)
if (iterpr .le. 1) goto 400
incr = 1
k00 = nv
C
C solving the corral-system
C
400 k = k00
if (k .gt. nv) goto 430
if (imp .gt. 7) call n1fc1o(io,31,nv,mm1,i3,i4,i5,d1,d2,rr,r)
410 j = jc(k)
ps1 = a(j)
ps2 = e(j)
if (k .eq. 1) goto 420
k1 = k - 1
do 415 kk = 1,k1
jj = (kk-1)*mm1 + k
ps0 = r(jj)
ps1 = ps1 - ps0*w1(kk)
415 ps2 = ps2 - ps0*w2(kk)
420 ps0 = rr(k)
w1(k) = ps1 / ps0
w2(k) = ps2 / ps0
k = k + 1
if (k .le. nv) goto 410
C two-two system
430 k = 1
if (incr .eq. 1) k = nv
440 w1s = w1s + w1(k)*w1(k)
w2s = w2s + w2(k)*w2(k)
w12s = w12s + w1(k)*w2(k)
k = k + 1
if (k .le. nv) goto 440
det = w1s*w2s - w12s*w12s
ps2 = w2s*deps - w12s
ps1 = w1s - w12s*deps
450 v1 = ps2 / det
v2 = ps1 / det
460 u1 = deps - v1
u2 = 1.d0 - v2
if (nv .eq. nc+1) u1 = 0.d0
C backward
y(nv) = (v1*w1(nv)+v2*w2(nv)) / rr(nv)
if (nv .eq. 1) goto 500
do 480 l = 2,nv
k = nv - l + 1
k1 = k + 1
ps = v1*w1(k) + v2*w2(k)
mek = (k-1) * mm1
do 470 kk = k1,nv
mej = mek + kk
470 ps = ps - r(mej)*y(kk)
480 y(k) = ps / rr(k)
C
C test for positivity
C
500 continue
do 530 k = 1,nv
if (y(k) .le. 0.d0) goto 550
530 continue
do 540 k = 1,nv
540 xpr(k) = y(k)
goto 200
C interpolating between x and y
550 teta = 0.d0
k0 = k
do 560 k = 1,nv
if (y(k) .ge. 0.d0) goto 560
ps = y(k) / (y(k)-xpr(k))
if (teta .ge. ps) goto 560
teta = ps
k0 = k
560 continue
do 570 k = 1,nv
ps = teta*xpr(k) + (1.d0-teta)*y(k)
if (ps .le. dzero) ps = 0.d0
570 xpr(k) = ps
if (imp .le. 6) goto 600
ps1 = 0.d0
ps2 = 0.d0
do 580 k = 1,nv
do 580 kk = 1,nv
j1 = max0(jc(k),jc(kk))
j2 = min0(jc(k),jc(kk))
jj = (j1-1)*mm1 + j2
ps1 = ps1 + xpr(k)*xpr(kk)*r(jj)
ps2 = ps2 + y(k)*y(kk)*r(jj)
580 continue
C
C compressing the corral
C
600 nv = nv - 1
incr = 0
k00 = k0
w1s = 0.d0
w2s = 0.d0
w12s = 0.d0
l = jc(k0)
if (l .ne. 1) nc = nc - 1
if (imp .gt. 6) call n1fc1o(io,32,k0,l,i3,i4,i5,y(k0),ps1,ps2,d4)
if (k0 .gt. nv) goto 400
k1 = k0 - 1
do 620 k = k0,nv
xpr(k) = xpr(k+1)
if (k0 .eq. 1) goto 620
do 610 kk = 1,k1
mek = (kk-1)*mm1 + k
610 r(mek) = r(mek+1)
620 jc(k) = jc(k+1)
xpr(nv+1) = 0.d0
630 mek = (k0-1)*mm1 + k0 + 1
ps = r(mek)
ps12 = rr(k0+1)
ps0 = dsqrt(ps*ps+ps12*ps12)
ps = ps / ps0
ps12 = ps12 / ps0
rr(k0) = ps0
if (k0 .eq. nv) goto 400
k1 = k0 + 1
mek01 = (k0-1) * mm1
mek = k0 * mm1
mekk = mek - mm1
do 640 k = k1,nv
j1 = mekk + k
j2 = mek + k
r(j1) = ps*r(j1+1) + ps12*r(j2+1)
if (k .gt. k1) r(j2) = ps2
640 ps2 = (-ps12)*r(j1+1) + ps*r(j2+1)
r(j2+1) = ps2
k0 = k0 + 1
goto 630
C
C *** finished ***
C
900 iflag = 0
do 930 j = 1,ntot
930 al(j) = 0.
do 940 k = 1,nv
j = jc(k) - 1
if (j .ne. 0) al(j) = xpr(k)
940 continue
u = u1
if (imp .le. 5) return
call n1fc1o(io,34,nc,nv,i3,i4,jc,s2,sp,u1,d4)
return
end
|