| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 
 |       subroutine hybrd(fcn,n,x,fvec,xtol,maxfev,ml,mu,epsfcn,diag,
     *                 mode,factor,nprint,info,nfev,fjac,ldfjac,r,lr,
     *                 qtf,wa1,wa2,wa3,wa4)
      integer n,maxfev,ml,mu,mode,nprint,info,nfev,ldfjac,lr
      double precision xtol,epsfcn,factor
      double precision x(n),fvec(n),diag(n),fjac(ldfjac,n),r(lr),
     *                 qtf(n),wa1(n),wa2(n),wa3(n),wa4(n)
      external fcn
c     **********
c
c     subroutine hybrd
c
c     the purpose of hybrd is to find a zero of a system of
c     n nonlinear functions in n variables by a modification
c     of the powell hybrid method. the user must provide a
c     subroutine which calculates the functions. the jacobian is
c     then calculated by a forward-difference approximation.
c
c     the subroutine statement is
c
c       subroutine hybrd(fcn,n,x,fvec,xtol,maxfev,ml,mu,epsfcn,
c                        diag,mode,factor,nprint,info,nfev,fjac,
c                        ldfjac,r,lr,qtf,wa1,wa2,wa3,wa4)
c
c     where
c
c       fcn is the name of the user-supplied subroutine which
c         calculates the functions. fcn must be declared
c         in an external statement in the user calling
c         program, and should be written as follows.
c
c         subroutine fcn(n,x,fvec,iflag)
c         integer n,iflag
c         double precision x(n),fvec(n)
c         ----------
c         calculate the functions at x and
c         return this vector in fvec.
c         ---------
c         return
c         end
c
c         the value of iflag should not be changed by fcn unless
c         the user wants to terminate execution of hybrd.
c         in this case set iflag to a negative integer.
c
c       n is a positive integer input variable set to the number
c         of functions and variables.
c
c       x is an array of length n. on input x must contain
c         an initial estimate of the solution vector. on output x
c         contains the final estimate of the solution vector.
c
c       fvec is an output array of length n which contains
c         the functions evaluated at the output x.
c
c       xtol is a nonnegative input variable. termination
c         occurs when the relative error between two consecutive
c         iterates is at most xtol.
c
c       maxfev is a positive integer input variable. termination
c         occurs when the number of calls to fcn is at least maxfev
c         by the end of an iteration.
c
c       ml is a nonnegative integer input variable which specifies
c         the number of subdiagonals within the band of the
c         jacobian matrix. if the jacobian is not banded, set
c         ml to at least n - 1.
c
c       mu is a nonnegative integer input variable which specifies
c         the number of superdiagonals within the band of the
c         jacobian matrix. if the jacobian is not banded, set
c         mu to at least n - 1.
c
c       epsfcn is an input variable used in determining a suitable
c         step length for the forward-difference approximation. this
c         approximation assumes that the relative errors in the
c         functions are of the order of epsfcn. if epsfcn is less
c         than the machine precision, it is assumed that the relative
c         errors in the functions are of the order of the machine
c         precision.
c
c       diag is an array of length n. if mode = 1 (see
c         below), diag is internally set. if mode = 2, diag
c         must contain positive entries that serve as
c         multiplicative scale factors for the variables.
c
c       mode is an integer input variable. if mode = 1, the
c         variables will be scaled internally. if mode = 2,
c         the scaling is specified by the input diag. other
c         values of mode are equivalent to mode = 1.
c
c       factor is a positive input variable used in determining the
c         initial step bound. this bound is set to the product of
c         factor and the euclidean norm of diag*x if nonzero, or else
c         to factor itself. in most cases factor should lie in the
c         interval (.1,100.). 100. is a generally recommended value.
c
c       nprint is an integer input variable that enables controlled
c         printing of iterates if it is positive. in this case,
c         fcn is called with iflag = 0 at the beginning of the first
c         iteration and every nprint iterations thereafter and
c         immediately prior to return, with x and fvec available
c         for printing. if nprint is not positive, no special calls
c         of fcn with iflag = 0 are made.
c
c       info is an integer output variable. if the user has
c         terminated execution, info is set to the (negative)
c         value of iflag. see description of fcn. otherwise,
c         info is set as follows.
c
c         info = 0   improper input parameters.
c
c         info = 1   relative error between two consecutive iterates
c                    is at most xtol.
c
c         info = 2   number of calls to fcn has reached or exceeded
c                    maxfev.
c
c         info = 3   xtol is too small. no further improvement in
c                    the approximate solution x is possible.
c
c         info = 4   iteration is not making good progress, as
c                    measured by the improvement from the last
c                    five jacobian evaluations.
c
c         info = 5   iteration is not making good progress, as
c                    measured by the improvement from the last
c                    ten iterations.
c
c       nfev is an integer output variable set to the number of
c         calls to fcn.
c
c       fjac is an output n by n array which contains the
c         orthogonal matrix q produced by the qr factorization
c         of the final approximate jacobian.
c
c       ldfjac is a positive integer input variable not less than n
c         which specifies the leading dimension of the array fjac.
c
c       r is an output array of length lr which contains the
c         upper triangular matrix produced by the qr factorization
c         of the final approximate jacobian, stored rowwise.
c
c       lr is a positive integer input variable not less than
c         (n*(n+1))/2.
c
c       qtf is an output array of length n which contains
c         the vector (q transpose)*fvec.
c
c       wa1, wa2, wa3, and wa4 are work arrays of length n.
c
c     subprograms called
c
c       user-supplied ...... fcn
c
c       minpack-supplied ... dogleg,dlamch,enorm,fdjac1,
c                            qform,qrfac,r1mpyq,r1updt
c
c       fortran-supplied ... dabs,dmax1,dmin1,min0,mod
c
c     argonne national laboratory. minpack project. march 1980.
c     burton s. garbow, kenneth e. hillstrom, jorge j. more
c
c     **********
      integer i,iflag,iter,j,jm1,l,msum,ncfail,ncsuc,nslow1,nslow2
      integer iwa(1)
      logical jeval,sing
      double precision actred,delta,epsmch,fnorm,fnorm1,one,pnorm,
     *                 prered,p1,p5,p001,p0001,ratio,sum,temp,xnorm,
     *                 zero
      double precision dlamch,enorm
      data one,p1,p5,p001,p0001,zero
     *     /1.0d0,1.0d-1,5.0d-1,1.0d-3,1.0d-4,0.0d0/
c
c     epsmch is the machine precision.
c
      epsmch = dlamch('p')
c
      info = 0
      iflag = 0
      nfev = 0
c
c     check the input parameters for errors.
c
      if (n .le. 0 .or. xtol .lt. zero .or. maxfev .le. 0
     *    .or. ml .lt. 0 .or. mu .lt. 0 .or. factor .le. zero
     *    .or. ldfjac .lt. n .or. lr .lt. (n*(n + 1))/2) go to 300
      if (mode .ne. 2) go to 20
      do 10 j = 1, n
         if (diag(j) .le. zero) go to 300
   10    continue
   20 continue
c
c     evaluate the function at the starting point
c     and calculate its norm.
c
      iflag = 1
      call fcn(n,x,fvec,iflag)
      nfev = 1
      if (iflag .lt. 0) go to 300
      fnorm = enorm(n,fvec)
c
c     determine the number of calls to fcn needed to compute
c     the jacobian matrix.
c
      msum = min0(ml+mu+1,n)
c
c     initialize iteration counter and monitors.
c
      iter = 1
      ncsuc = 0
      ncfail = 0
      nslow1 = 0
      nslow2 = 0
c
c     beginning of the outer loop.
c
   30 continue
         jeval = .true.
c
c        calculate the jacobian matrix.
c
         iflag = 2
         call fdjac1(fcn,n,x,fvec,fjac,ldfjac,iflag,ml,mu,epsfcn,wa1,
     *               wa2)
         nfev = nfev + msum
         if (iflag .lt. 0) go to 300
c
c        compute the qr factorization of the jacobian.
c
         call qrfac(n,n,fjac,ldfjac,.false.,iwa,1,wa1,wa2,wa3)
c
c        on the first iteration and if mode is 1, scale according
c        to the norms of the columns of the initial jacobian.
c
         if (iter .ne. 1) go to 70
         if (mode .eq. 2) go to 50
         do 40 j = 1, n
            diag(j) = wa2(j)
            if (wa2(j) .eq. zero) diag(j) = one
   40       continue
   50    continue
c
c        on the first iteration, calculate the norm of the scaled x
c        and initialize the step bound delta.
c
         do 60 j = 1, n
            wa3(j) = diag(j)*x(j)
   60       continue
         xnorm = enorm(n,wa3)
         delta = factor*xnorm
         if (delta .eq. zero) delta = factor
   70    continue
c
c        form (q transpose)*fvec and store in qtf.
c
         do 80 i = 1, n
            qtf(i) = fvec(i)
   80       continue
         do 120 j = 1, n
            if (fjac(j,j) .eq. zero) go to 110
            sum = zero
            do 90 i = j, n
               sum = sum + fjac(i,j)*qtf(i)
   90          continue
            temp = -sum/fjac(j,j)
            do 100 i = j, n
               qtf(i) = qtf(i) + fjac(i,j)*temp
  100          continue
  110       continue
  120       continue
c
c        copy the triangular factor of the qr factorization into r.
c
         sing = .false.
         do 150 j = 1, n
            l = j
            jm1 = j - 1
            if (jm1 .lt. 1) go to 140
            do 130 i = 1, jm1
               r(l) = fjac(i,j)
               l = l + n - i
  130          continue
  140       continue
            r(l) = wa1(j)
            if (wa1(j) .eq. zero) sing = .true.
  150       continue
c
c        accumulate the orthogonal factor in fjac.
c
         call qform(n,n,fjac,ldfjac,wa1)
c
c        rescale if necessary.
c
         if (mode .eq. 2) go to 170
         do 160 j = 1, n
            diag(j) = dmax1(diag(j),wa2(j))
  160       continue
  170    continue
c
c        beginning of the inner loop.
c
  180    continue
c
c           if requested, call fcn to enable printing of iterates.
c
            if (nprint .le. 0) go to 190
            iflag = 0
            if (mod(iter-1,nprint) .eq. 0) call fcn(n,x,fvec,iflag)
            if (iflag .lt. 0) go to 300
  190       continue
c
c           determine the direction p.
c
            call dogleg(n,r,lr,diag,qtf,delta,wa1,wa2,wa3)
c
c           store the direction p and x + p. calculate the norm of p.
c
            do 200 j = 1, n
               wa1(j) = -wa1(j)
               wa2(j) = x(j) + wa1(j)
               wa3(j) = diag(j)*wa1(j)
  200          continue
            pnorm = enorm(n,wa3)
c
c           on the first iteration, adjust the initial step bound.
c
            if (iter .eq. 1) delta = dmin1(delta,pnorm)
c
c           evaluate the function at x + p and calculate its norm.
c
            iflag = 1
            call fcn(n,wa2,wa4,iflag)
            nfev = nfev + 1
            if (iflag .lt. 0) go to 300
            fnorm1 = enorm(n,wa4)
c
c           compute the scaled actual reduction.
c
            actred = -one
            if (fnorm1 .lt. fnorm) actred = one - (fnorm1/fnorm)**2
c
c           compute the scaled predicted reduction.
c
            l = 1
            do 220 i = 1, n
               sum = zero
               do 210 j = i, n
                  sum = sum + r(l)*wa1(j)
                  l = l + 1
  210             continue
               wa3(i) = qtf(i) + sum
  220          continue
            temp = enorm(n,wa3)
            prered = zero
            if (temp .lt. fnorm) prered = one - (temp/fnorm)**2
c
c           compute the ratio of the actual to the predicted
c           reduction.
c
            ratio = zero
            if (prered .gt. zero) ratio = actred/prered
c
c           update the step bound.
c
            if (ratio .ge. p1) go to 230
               ncsuc = 0
               ncfail = ncfail + 1
               delta = p5*delta
               go to 240
  230       continue
               ncfail = 0
               ncsuc = ncsuc + 1
               if (ratio .ge. p5 .or. ncsuc .gt. 1)
     *            delta = dmax1(delta,pnorm/p5)
               if (dabs(ratio-one) .le. p1) delta = pnorm/p5
  240       continue
c
c           test for successful iteration.
c
            if (ratio .lt. p0001) go to 260
c
c           successful iteration. update x, fvec, and their norms.
c
            do 250 j = 1, n
               x(j) = wa2(j)
               wa2(j) = diag(j)*x(j)
               fvec(j) = wa4(j)
  250          continue
            xnorm = enorm(n,wa2)
            fnorm = fnorm1
            iter = iter + 1
  260       continue
c
c           determine the progress of the iteration.
c
            nslow1 = nslow1 + 1
            if (actred .ge. p001) nslow1 = 0
            if (jeval) nslow2 = nslow2 + 1
            if (actred .ge. p1) nslow2 = 0
c
c           test for convergence.
c
            if (delta .le. xtol*xnorm .or. fnorm .eq. zero) info = 1
            if (info .ne. 0) go to 300
c
c           tests for termination and stringent tolerances.
c
            if (nfev .ge. maxfev) info = 2
            if (p1*dmax1(p1*delta,pnorm) .le. epsmch*xnorm) info = 3
            if (nslow2 .eq. 5) info = 4
            if (nslow1 .eq. 10) info = 5
            if (info .ne. 0) go to 300
c
c           criterion for recalculating jacobian approximation
c           by forward differences.
c
            if (ncfail .eq. 2) go to 290
c
c           calculate the rank one modification to the jacobian
c           and update qtf if necessary.
c
            do 280 j = 1, n
               sum = zero
               do 270 i = 1, n
                  sum = sum + fjac(i,j)*wa4(i)
  270             continue
               wa2(j) = (sum - wa3(j))/pnorm
               wa1(j) = diag(j)*((diag(j)*wa1(j))/pnorm)
               if (ratio .ge. p0001) qtf(j) = sum
  280          continue
c
c           compute the qr factorization of the updated jacobian.
c
            call r1updt(n,n,r,lr,wa1,wa2,wa3,sing)
            call r1mpyq(n,n,fjac,ldfjac,wa2,wa3)
            call r1mpyq(1,n,qtf,1,wa2,wa3)
c
c           end of the inner loop.
c
            jeval = .false.
            go to 180
  290    continue
c
c        end of the outer loop.
c
         go to 30
  300 continue
c
c     termination, either normal or user imposed.
c
      if (iflag .lt. 0) info = iflag
      iflag = 0
      if (nprint .gt. 0) call fcn(n,x,fvec,iflag)
      return
c
c     last card of subroutine hybrd.
c
      end
 |