File: cossim.f

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (285 lines) | stat: -rw-r--r-- 9,482 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
      subroutine cossim(neq,x,xptr,z,zptr,iz,izptr,told,tf,
c     Copyright INRIA
     $     tevts,evtspt,nevts,pointi,inpptr,inplnk,outptr,
     $     outlnk,lnkptr,clkptr,ordptr,nptr,
     $     ordclk,nordcl,ztyp,cord,iord,niord,oord,zord,
     $     critev,rpar,rpptr,ipar,
     $     ipptr,funptr,funtyp,rhot,ihot,outtb,jroot,w,iwa,ierr) 
C     
C     
C..   Parameters .. 
c     maximum number of clock output for one block
      integer nts
      parameter (nts=100)
C     
      integer neq(*)
C     neq must contain after #states all integer data for simblk and grblk
      double precision x(*),z(*),told,tf,tevts(*),rpar(*),outtb(*)
      double precision w(*),rhot(*)
      integer iwa(*)
C     X must contain after state values all real data for simblk and grblk
      integer xptr(*),zptr(*),iz(*),izptr(*),evtspt(nevts),nevts,pointi
      integer inpptr(*),inplnk(*),outptr(*),outlnk(*),lnkptr(*)
      integer clkptr(*),ordptr(nptr),nptr,ztyp(*)
      integer ordclk(nordcl,2),nordcl,cord(*),iord(*),oord(*),zord(*)
      integer critev(*),rpptr(*),ipar(*),ipptr(*),funptr(*),funtyp(*)
      integer ihot(*),jroot(*),ierr
c
      logical hot,stuck
      integer i,k,ierr1,iopt,istate,itask,j,jdum,jt,
     &     ksz,flag,keve,kpo,nord,nclock
      double precision t
      double precision tvec(nts)
c
      external grblk,simblk

      integer otimer,ntimer,stimer
      external stimer

      integer         nblk,nordptr,nout,ng,nrwp,niwp,ncord,
     &     noord,nzord
      common /cossiz/ nblk,nordptr,nout,ng,nrwp,niwp,ncord,
     &     noord,nzord
C     
      integer halt
      common /coshlt/ halt
c
      integer kfun
      common /curblk/ kfun
c     
      double precision atol,rtol,ttol,deltat
      common /costol/ atol,rtol,ttol,deltat
c
      save otimer
      data otimer/0/
c    
      ierr = 0
      hot = .false.
      stuck=.false.
      call xscion(inxsci)
C     initialization
      call iset(niwp,0,ihot,1)
      call dset(nrwp,0.0d0,rhot,1)

      ntvec=0

c     initialisation (propagation of constant blocks outputs)
      if(niord.eq.0) goto 10
      do 05 jj=1,niord
         kfun=iord(jj)
         nclock = iord(jj+niord)
         flag=1
         call callf(kfun,nclock,funptr,funtyp,told,x,x,xptr,z,zptr,iz,
     $        izptr,rpar,rpptr,ipar,ipptr,tvec,ntvec,inpptr,inplnk
     $        ,outptr,outlnk,lnkptr,outtb,flag) 
         if (flag .lt. 0) then
            ierr = 5 - flag
            return
         endif
 05   continue
C     main loop on time
 10   continue
      if (told .ge. tf) return
      if (inxsci.eq.1) then
         ntimer=stimer()
         if (ntimer.ne.otimer) then
            call sxevents()
            otimer=ntimer
            if (halt.ne.0) then
               halt=0
               return
            endif
         endif
      endif
      if (pointi.eq.0) then
         t = tf
      else
         t = tevts(pointi)
      endif
      if (abs(t-told) .lt. ttol) then
         t = told
C     update output part
      endif
      if (told .gt. t) then
C     !  scheduling problem
         ierr = 1
         return
      endif
      if (told .ne. t) then
         if (xptr(nblk+1) .eq. 1) then
C     .     no continuous state
            if(told+deltat+ttol.gt.t) then
               told=t
            else
               told=told+deltat
            endif
c     .     update outputs of 'c' type blocks
            if (ncord.eq.0) goto 343

            call cdoit(neq,x,xptr,z,zptr,iz,izptr,told,tf
     $           ,tevts,evtspt,nevts,pointi,inpptr,inplnk,outptr
     $           ,outlnk,lnkptr,clkptr,ordptr,nptr
     $           ,ordclk,nordcl,cord,iord,niord,oord,zord,critev,
     $           rpar,rpptr,ipar
     $           ,ipptr,funptr,funtyp,outtb,w,hot,ierr) 
            if(ierr.ne.0) return
 343        continue
C     
         else
C     integrate
            if (hot) then
               istate = 2
            else
               istate = 1
            endif
            itask = 4
C     Compute tcrit (rhot(1))
            rhot(1)=tf+ttol
            kpo=pointi
 20         if(critev(kpo).eq.1) then
               rhot(1)=tevts(kpo)
               goto 30
            endif
            kpo=evtspt(kpo)
            if(kpo.ne.0) goto 20
 30         continue
c     
            
c     .     form initial zero crossing input signs
            ig=1
            if (ng.gt.0) then
c     .        loop on zero crossing block
               do 35 kfun=1,nblk
                  if (ztyp(kfun).eq.1) then
c     .           loop on block ports
                     do 34 kport=inpptr(kfun),inpptr(kfun+1)-1
                        klink=inplnk(kport)
                        do 33 i=lnkptr(klink),lnkptr(klink+1)-1
                           if (outtb(i).gt.0.d0) then
                              jroot(ng+ig) = 1
                           else
                              jroot(ng+ig) = 0
                           endif
                           ig=ig+1
 33                     continue
 34                  continue
                  endif
 35            continue
            endif
c     
            iopt = 0
c
            jt = 2
            t=min(told+deltat,min(t,tf+ttol))
c     
c
            call lsodar(simblk,neq,x,told,t,1,rtol,atol,itask,
     &           istate,iopt,rhot,nrwp,ihot,niwp,jdum,jt,grblk,
     &           ng,jroot)
            if (istate .le. 0) then
               if (istate .eq. -3) then
                  if(stuck) then
                     ierr= 2
                     return
                  endif
                  itask = 2
                  istate = 1
                  call lsoda(simblk,neq,x,told,t,
     &                 1,rtol,atol,itask,
     &                 istate,iopt,rhot,nrwp,ihot,niwp,jdum,jt)
                  hot = .false.
                  stuck=.true.
                  if (istate .gt. 0) goto 38
               endif
C     !        integration problem
               ierr = 100-istate
               return
            endif
            hot = .true.
            stuck=.false.
 38         continue
c     .     update outputs of 'c' type  blocks
            nclock = 0
            ntvec=0
            if (ncord.gt.0) then
               call cdoit(neq,x,xptr,z,zptr,iz,izptr,told,tf
     $              ,tevts,evtspt,nevts,pointi,inpptr,inplnk,outptr
     $              ,outlnk,lnkptr,clkptr,ordptr,nptr
     $              ,ordclk,nordcl,cord,iord,niord,oord,zord,critev,
     $              rpar,rpptr,ipar
     $              ,ipptr,funptr,funtyp,outtb,w,hot,ierr) 
               if(ierr.ne.0) return
            endif
            if (istate .eq. 3) then
C     .        at a least one root has been found
               ig = 1
               do 50 kfun = 1,nblk
                  if (ztyp(kfun).eq.1) then
c     .              loop on block input ports
                     ksz=0
                     do 42 kport=inpptr(kfun),inpptr(kfun+1)-1
c     .                 get corresponding link pointer 
                        klink=inplnk(kport)
                        ksz=ksz+lnkptr(klink+1)-lnkptr(klink)
 42                  continue
c     .           kev is a base 2 coding of reached zero crossing surfaces
                     kev=0
                     do 44 j = 1,ksz
                        kev=2*kev+jroot(ig+ksz-j)
 44                  continue
                     jjflg=1
                     if (kev.eq.0) jjflg=0
                     do 45 j = 1,ksz
                        kev=2*kev+jroot(ng+ig+ksz-j)
 45                  continue
                     ig=ig+ksz
                     if (jjflg .ne. 0) then
                        flag=3
                        ntvec=clkptr(kfun+1)-clkptr(kfun)
c     .              call corresponding block to determine output event (kev)
                        call callf(kfun,kev,funptr,funtyp,
     $                       told,x,x,xptr,z,
     $                       zptr,iz,izptr,rpar,rpptr,ipar,ipptr,tvec,
     $                       ntvec,inpptr,inplnk,outptr,outlnk,lnkptr,
     $                       outtb,flag) 
                        if(flag.lt.0) then
                           ierr=5-flag
                           return
                        endif
c     .              update event agenda
                        do 47 k=1,clkptr(kfun+1)-clkptr(kfun)
                           if (tvec(k).ge.told) then
                              if (critev(k+clkptr(kfun)-1).eq.1)
     $                             hot=.false.
                              call addevs(tevts,evtspt,nevts,pointi,
     &                             tvec(k),k+clkptr(kfun)-1,ierr1)
                              if (ierr1 .ne. 0) then
C     .                       nevts too small
                                 ierr = 3
                                 return
                              endif
                           endif
 47                     continue
                     endif
                  endif
 50            continue
            endif
c     !     save initial signs of zero crossing surface
c     
         endif
      else
C     .  t==told
         call ddoit(neq,x,xptr,z,zptr,iz,izptr,told,tf,
     $        tevts,evtspt,nevts,pointi,inpptr,inplnk,outptr,
     $        outlnk,lnkptr,clkptr,ordptr,nptr,
     $        ordclk,nordcl,cord,iord,niord,oord,zord,critev,
     $        rpar,rpptr,ipar,
     $        ipptr,funptr,funtyp,outtb,w,iwa,hot,ierr) 
         if(ierr.ne.0) return
C     
      endif
C     end of main loop on time
      goto 10
      end